MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsn Unicode version

Theorem dprdsn 15287
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdsn  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G dom DProd  { <. A ,  S >. }  /\  ( G DProd  { <. A ,  S >. } )  =  S ) )

Proof of Theorem dprdsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
2 eqid 2296 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2296 . . 3  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
4 subgrcl 14642 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
54adantl 452 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  G  e.  Grp )
6 snex 4232 . . . 4  |-  { A }  e.  _V
76a1i 10 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { A }  e.  _V )
8 f1osng 5530 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { <. A ,  S >. } : { A } -1-1-onto-> { S } )
9 f1of 5488 . . . . 5  |-  ( {
<. A ,  S >. } : { A } -1-1-onto-> { S }  ->  { <. A ,  S >. } : { A } --> { S } )
108, 9syl 15 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { <. A ,  S >. } : { A } --> { S } )
11 simpr 447 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  S  e.  (SubGrp `  G )
)
1211snssd 3776 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { S }  C_  (SubGrp `  G
) )
13 fss 5413 . . . 4  |-  ( ( { <. A ,  S >. } : { A }
--> { S }  /\  { S }  C_  (SubGrp `  G ) )  ->  { <. A ,  S >. } : { A }
--> (SubGrp `  G )
)
1410, 12, 13syl2anc 642 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { <. A ,  S >. } : { A } --> (SubGrp `  G ) )
15 simpr3 963 . . . 4  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  =/=  y )
16 simpr1 961 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  e.  { A } )
17 elsni 3677 . . . . . . . 8  |-  ( x  e.  { A }  ->  x  =  A )
1816, 17syl 15 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  =  A )
19 simpr2 962 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
y  e.  { A } )
20 elsni 3677 . . . . . . . 8  |-  ( y  e.  { A }  ->  y  =  A )
2119, 20syl 15 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
y  =  A )
2218, 21eqtr4d 2331 . . . . . 6  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  =  y )
2322a1d 22 . . . . 5  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
( -.  ( {
<. A ,  S >. } `
 x )  C_  ( (Cntz `  G ) `  ( { <. A ,  S >. } `  y
) )  ->  x  =  y ) )
2423necon1ad 2526 . . . 4  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
( x  =/=  y  ->  ( { <. A ,  S >. } `  x
)  C_  ( (Cntz `  G ) `  ( { <. A ,  S >. } `  y ) ) ) )
2515, 24mpd 14 . . 3  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
( { <. A ,  S >. } `  x
)  C_  ( (Cntz `  G ) `  ( { <. A ,  S >. } `  y ) ) )
265adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  G  e.  Grp )
27 eqid 2296 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
2827subgacs 14668 . . . . . . . 8  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
29 acsmre 13570 . . . . . . . 8  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
3026, 28, 293syl 18 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
3117adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  x  =  A )
3231sneqd 3666 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  { x }  =  { A } )
3332difeq2d 3307 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { A }  \  {
x } )  =  ( { A }  \  { A } ) )
34 difid 3535 . . . . . . . . . . . . 13  |-  ( { A }  \  { A } )  =  (/)
3533, 34syl6eq 2344 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { A }  \  {
x } )  =  (/) )
3635imaeq2d 5028 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  ( { <. A ,  S >. } " (/) ) )
37 ima0 5046 . . . . . . . . . . 11  |-  ( {
<. A ,  S >. }
" (/) )  =  (/)
3836, 37syl6eq 2344 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  (/) )
3938unieqd 3854 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  U. (/) )
40 uni0 3870 . . . . . . . . 9  |-  U. (/)  =  (/)
4139, 40syl6eq 2344 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  (/) )
42 0ss 3496 . . . . . . . . 9  |-  (/)  C_  { ( 0g `  G ) }
4342a1i 10 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (/)  C_  { ( 0g `  G ) } )
4441, 43eqsstrd 3225 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) 
C_  { ( 0g
`  G ) } )
4520subg 14658 . . . . . . . 8  |-  ( G  e.  Grp  ->  { ( 0g `  G ) }  e.  (SubGrp `  G ) )
4626, 45syl 15 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  { ( 0g `  G ) }  e.  (SubGrp `  G ) )
473mrcsscl 13538 . . . . . . 7  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) 
C_  { ( 0g
`  G ) }  /\  { ( 0g
`  G ) }  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  { ( 0g `  G ) } )
4830, 44, 46, 47syl3anc 1182 . . . . . 6  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  { ( 0g `  G ) } )
492subg0cl 14645 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
5049ad2antlr 707 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( 0g `  G )  e.  S )
5117fveq2d 5545 . . . . . . . . 9  |-  ( x  e.  { A }  ->  ( { <. A ,  S >. } `  x
)  =  ( {
<. A ,  S >. } `
 A ) )
52 fvsng 5730 . . . . . . . . 9  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( { <. A ,  S >. } `  A )  =  S )
5351, 52sylan9eqr 2350 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { <. A ,  S >. } `  x )  =  S )
5450, 53eleqtrrd 2373 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( 0g `  G )  e.  ( { <. A ,  S >. } `  x
) )
5554snssd 3776 . . . . . 6  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  { ( 0g `  G ) }  C_  ( { <. A ,  S >. } `
 x ) )
5648, 55sstrd 3202 . . . . 5  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  ( { <. A ,  S >. } `
 x ) )
57 dfss1 3386 . . . . 5  |-  ( ( (mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  ( { <. A ,  S >. } `
 x )  <->  ( ( { <. A ,  S >. } `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )
5856, 57sylib 188 . . . 4  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
( { <. A ,  S >. } `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )
5958, 48eqsstrd 3225 . . 3  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
( { <. A ,  S >. } `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) ) 
C_  { ( 0g
`  G ) } )
601, 2, 3, 5, 7, 14, 25, 59dmdprdd 15253 . 2  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  G dom DProd  { <. A ,  S >. } )
613dprdspan 15278 . . . 4  |-  ( G dom DProd  { <. A ,  S >. }  ->  ( G DProd  {
<. A ,  S >. } )  =  ( (mrCls `  (SubGrp `  G )
) `  U. ran  { <. A ,  S >. } ) )
6260, 61syl 15 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G DProd  { <. A ,  S >. } )  =  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  { <. A ,  S >. } ) )
63 rnsnopg 5168 . . . . . . . 8  |-  ( A  e.  V  ->  ran  {
<. A ,  S >. }  =  { S }
)
6463adantr 451 . . . . . . 7  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ran  {
<. A ,  S >. }  =  { S }
)
6564unieqd 3854 . . . . . 6  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  U. ran  {
<. A ,  S >. }  =  U. { S } )
66 unisng 3860 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  U. { S }  =  S )
6766adantl 452 . . . . . 6  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  U. { S }  =  S
)
6865, 67eqtrd 2328 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  U. ran  {
<. A ,  S >. }  =  S )
6968fveq2d 5545 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ran  { <. A ,  S >. } )  =  ( (mrCls `  (SubGrp `  G
) ) `  S
) )
705, 28, 293syl 18 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
713mrcid 13531 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  S
)  =  S )
7270, 11, 71syl2anc 642 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  S
)  =  S )
7369, 72eqtrd 2328 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ran  { <. A ,  S >. } )  =  S )
7462, 73eqtrd 2328 . 2  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G DProd  { <. A ,  S >. } )  =  S )
7560, 74jca 518 1  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G dom DProd  { <. A ,  S >. }  /\  ( G DProd  { <. A ,  S >. } )  =  S ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801    \ cdif 3162    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   <.cop 3656   U.cuni 3843   class class class wbr 4039   dom cdm 4705   ran crn 4706   "cima 4708   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Basecbs 13164   0gc0g 13416  Moorecmre 13500  mrClscmrc 13501  ACScacs 13503   Grpcgrp 14378  SubGrpcsubg 14631  Cntzccntz 14807   DProd cdprd 15247
This theorem is referenced by:  dprd2da  15293  dmdprdpr  15300  dprdpr  15301  dpjlem  15302  pgpfaclem1  15332
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-gsum 13421  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-ghm 14697  df-gim 14739  df-cntz 14809  df-oppg 14835  df-cmn 15107  df-dprd 15249
  Copyright terms: Public domain W3C validator