MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdsn Unicode version

Theorem dprdsn 15271
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Assertion
Ref Expression
dprdsn  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G dom DProd  { <. A ,  S >. }  /\  ( G DProd  { <. A ,  S >. } )  =  S ) )

Proof of Theorem dprdsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . 3  |-  (Cntz `  G )  =  (Cntz `  G )
2 eqid 2283 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2283 . . 3  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
4 subgrcl 14626 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
54adantl 452 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  G  e.  Grp )
6 snex 4216 . . . 4  |-  { A }  e.  _V
76a1i 10 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { A }  e.  _V )
8 f1osng 5514 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { <. A ,  S >. } : { A } -1-1-onto-> { S } )
9 f1of 5472 . . . . 5  |-  ( {
<. A ,  S >. } : { A } -1-1-onto-> { S }  ->  { <. A ,  S >. } : { A } --> { S } )
108, 9syl 15 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { <. A ,  S >. } : { A } --> { S } )
11 simpr 447 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  S  e.  (SubGrp `  G )
)
1211snssd 3760 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { S }  C_  (SubGrp `  G
) )
13 fss 5397 . . . 4  |-  ( ( { <. A ,  S >. } : { A }
--> { S }  /\  { S }  C_  (SubGrp `  G ) )  ->  { <. A ,  S >. } : { A }
--> (SubGrp `  G )
)
1410, 12, 13syl2anc 642 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  { <. A ,  S >. } : { A } --> (SubGrp `  G ) )
15 simpr3 963 . . . 4  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  =/=  y )
16 simpr1 961 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  e.  { A } )
17 elsni 3664 . . . . . . . 8  |-  ( x  e.  { A }  ->  x  =  A )
1816, 17syl 15 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  =  A )
19 simpr2 962 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
y  e.  { A } )
20 elsni 3664 . . . . . . . 8  |-  ( y  e.  { A }  ->  y  =  A )
2119, 20syl 15 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
y  =  A )
2218, 21eqtr4d 2318 . . . . . 6  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  ->  x  =  y )
2322a1d 22 . . . . 5  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
( -.  ( {
<. A ,  S >. } `
 x )  C_  ( (Cntz `  G ) `  ( { <. A ,  S >. } `  y
) )  ->  x  =  y ) )
2423necon1ad 2513 . . . 4  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
( x  =/=  y  ->  ( { <. A ,  S >. } `  x
)  C_  ( (Cntz `  G ) `  ( { <. A ,  S >. } `  y ) ) ) )
2515, 24mpd 14 . . 3  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  { A }  /\  y  e.  { A }  /\  x  =/=  y ) )  -> 
( { <. A ,  S >. } `  x
)  C_  ( (Cntz `  G ) `  ( { <. A ,  S >. } `  y ) ) )
265adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  G  e.  Grp )
27 eqid 2283 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
2827subgacs 14652 . . . . . . . 8  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
29 acsmre 13554 . . . . . . . 8  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
3026, 28, 293syl 18 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
3117adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  x  =  A )
3231sneqd 3653 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  { x }  =  { A } )
3332difeq2d 3294 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { A }  \  {
x } )  =  ( { A }  \  { A } ) )
34 difid 3522 . . . . . . . . . . . . 13  |-  ( { A }  \  { A } )  =  (/)
3533, 34syl6eq 2331 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { A }  \  {
x } )  =  (/) )
3635imaeq2d 5012 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  ( { <. A ,  S >. } " (/) ) )
37 ima0 5030 . . . . . . . . . . 11  |-  ( {
<. A ,  S >. }
" (/) )  =  (/)
3836, 37syl6eq 2331 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  (/) )
3938unieqd 3838 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  U. (/) )
40 uni0 3854 . . . . . . . . 9  |-  U. (/)  =  (/)
4139, 40syl6eq 2331 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) )  =  (/) )
42 0ss 3483 . . . . . . . . 9  |-  (/)  C_  { ( 0g `  G ) }
4342a1i 10 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (/)  C_  { ( 0g `  G ) } )
4441, 43eqsstrd 3212 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) 
C_  { ( 0g
`  G ) } )
4520subg 14642 . . . . . . . 8  |-  ( G  e.  Grp  ->  { ( 0g `  G ) }  e.  (SubGrp `  G ) )
4626, 45syl 15 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  { ( 0g `  G ) }  e.  (SubGrp `  G ) )
473mrcsscl 13522 . . . . . . 7  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) 
C_  { ( 0g
`  G ) }  /\  { ( 0g
`  G ) }  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  { ( 0g `  G ) } )
4830, 44, 46, 47syl3anc 1182 . . . . . 6  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  { ( 0g `  G ) } )
492subg0cl 14629 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
5049ad2antlr 707 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( 0g `  G )  e.  S )
5117fveq2d 5529 . . . . . . . . 9  |-  ( x  e.  { A }  ->  ( { <. A ,  S >. } `  x
)  =  ( {
<. A ,  S >. } `
 A ) )
52 fvsng 5714 . . . . . . . . 9  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( { <. A ,  S >. } `  A )  =  S )
5351, 52sylan9eqr 2337 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( { <. A ,  S >. } `  x )  =  S )
5450, 53eleqtrrd 2360 . . . . . . 7  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  ( 0g `  G )  e.  ( { <. A ,  S >. } `  x
) )
5554snssd 3760 . . . . . 6  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  { ( 0g `  G ) }  C_  ( { <. A ,  S >. } `
 x ) )
5648, 55sstrd 3189 . . . . 5  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  ( { <. A ,  S >. } `
 x ) )
57 dfss1 3373 . . . . 5  |-  ( ( (mrCls `  (SubGrp `  G
) ) `  U. ( { <. A ,  S >. } " ( { A }  \  {
x } ) ) )  C_  ( { <. A ,  S >. } `
 x )  <->  ( ( { <. A ,  S >. } `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )
5856, 57sylib 188 . . . 4  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
( { <. A ,  S >. } `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )  =  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) )
5958, 48eqsstrd 3212 . . 3  |-  ( ( ( A  e.  V  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  { A } )  ->  (
( { <. A ,  S >. } `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( {
<. A ,  S >. }
" ( { A }  \  { x }
) ) ) ) 
C_  { ( 0g
`  G ) } )
601, 2, 3, 5, 7, 14, 25, 59dmdprdd 15237 . 2  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  G dom DProd  { <. A ,  S >. } )
613dprdspan 15262 . . . 4  |-  ( G dom DProd  { <. A ,  S >. }  ->  ( G DProd  {
<. A ,  S >. } )  =  ( (mrCls `  (SubGrp `  G )
) `  U. ran  { <. A ,  S >. } ) )
6260, 61syl 15 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G DProd  { <. A ,  S >. } )  =  ( (mrCls `  (SubGrp `  G
) ) `  U. ran  { <. A ,  S >. } ) )
63 rnsnopg 5152 . . . . . . . 8  |-  ( A  e.  V  ->  ran  {
<. A ,  S >. }  =  { S }
)
6463adantr 451 . . . . . . 7  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ran  {
<. A ,  S >. }  =  { S }
)
6564unieqd 3838 . . . . . 6  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  U. ran  {
<. A ,  S >. }  =  U. { S } )
66 unisng 3844 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  U. { S }  =  S )
6766adantl 452 . . . . . 6  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  U. { S }  =  S
)
6865, 67eqtrd 2315 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  U. ran  {
<. A ,  S >. }  =  S )
6968fveq2d 5529 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ran  { <. A ,  S >. } )  =  ( (mrCls `  (SubGrp `  G
) ) `  S
) )
705, 28, 293syl 18 . . . . 5  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
713mrcid 13515 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  S
)  =  S )
7270, 11, 71syl2anc 642 . . . 4  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  S
)  =  S )
7369, 72eqtrd 2315 . . 3  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  (
(mrCls `  (SubGrp `  G
) ) `  U. ran  { <. A ,  S >. } )  =  S )
7462, 73eqtrd 2315 . 2  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G DProd  { <. A ,  S >. } )  =  S )
7560, 74jca 518 1  |-  ( ( A  e.  V  /\  S  e.  (SubGrp `  G
) )  ->  ( G dom DProd  { <. A ,  S >. }  /\  ( G DProd  { <. A ,  S >. } )  =  S ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   <.cop 3643   U.cuni 3827   class class class wbr 4023   dom cdm 4689   ran crn 4690   "cima 4692   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   Basecbs 13148   0gc0g 13400  Moorecmre 13484  mrClscmrc 13485  ACScacs 13487   Grpcgrp 14362  SubGrpcsubg 14615  Cntzccntz 14791   DProd cdprd 15231
This theorem is referenced by:  dprd2da  15277  dmdprdpr  15284  dprdpr  15285  dpjlem  15286  pgpfaclem1  15316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-ghm 14681  df-gim 14723  df-cntz 14793  df-oppg 14819  df-cmn 15091  df-dprd 15233
  Copyright terms: Public domain W3C validator