MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdspan Structured version   Unicode version

Theorem dprdspan 15585
Description: The direct product is the span of the union of the factors. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
dprdspan.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
dprdspan  |-  ( G dom DProd  S  ->  ( G DProd 
S )  =  ( K `  U. ran  S ) )

Proof of Theorem dprdspan
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 id 20 . . 3  |-  ( G dom DProd  S  ->  G dom DProd  S )
2 eqidd 2437 . . 3  |-  ( G dom DProd  S  ->  dom  S  =  dom  S )
3 dprdgrp 15563 . . . . 5  |-  ( G dom DProd  S  ->  G  e. 
Grp )
4 eqid 2436 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
54subgacs 14975 . . . . 5  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
6 acsmre 13877 . . . . 5  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
73, 5, 63syl 19 . . . 4  |-  ( G dom DProd  S  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
8 dprdf 15564 . . . . . . . 8  |-  ( G dom DProd  S  ->  S : dom  S --> (SubGrp `  G )
)
9 ffn 5591 . . . . . . . 8  |-  ( S : dom  S --> (SubGrp `  G )  ->  S  Fn  dom  S )
108, 9syl 16 . . . . . . 7  |-  ( G dom DProd  S  ->  S  Fn  dom  S )
11 fniunfv 5994 . . . . . . 7  |-  ( S  Fn  dom  S  ->  U_ k  e.  dom  S ( S `  k
)  =  U. ran  S )
1210, 11syl 16 . . . . . 6  |-  ( G dom DProd  S  ->  U_ k  e.  dom  S ( S `
 k )  = 
U. ran  S )
13 simpl 444 . . . . . . . . 9  |-  ( ( G dom DProd  S  /\  k  e.  dom  S )  ->  G dom DProd  S )
14 eqidd 2437 . . . . . . . . 9  |-  ( ( G dom DProd  S  /\  k  e.  dom  S )  ->  dom  S  =  dom  S )
15 simpr 448 . . . . . . . . 9  |-  ( ( G dom DProd  S  /\  k  e.  dom  S )  ->  k  e.  dom  S )
1613, 14, 15dprdub 15583 . . . . . . . 8  |-  ( ( G dom DProd  S  /\  k  e.  dom  S )  ->  ( S `  k )  C_  ( G DProd  S ) )
1716ralrimiva 2789 . . . . . . 7  |-  ( G dom DProd  S  ->  A. k  e.  dom  S ( S `
 k )  C_  ( G DProd  S ) )
18 iunss 4132 . . . . . . 7  |-  ( U_ k  e.  dom  S ( S `  k ) 
C_  ( G DProd  S
)  <->  A. k  e.  dom  S ( S `  k
)  C_  ( G DProd  S ) )
1917, 18sylibr 204 . . . . . 6  |-  ( G dom DProd  S  ->  U_ k  e.  dom  S ( S `
 k )  C_  ( G DProd  S ) )
2012, 19eqsstr3d 3383 . . . . 5  |-  ( G dom DProd  S  ->  U. ran  S 
C_  ( G DProd  S
) )
214dprdssv 15574 . . . . 5  |-  ( G DProd 
S )  C_  ( Base `  G )
2220, 21syl6ss 3360 . . . 4  |-  ( G dom DProd  S  ->  U. ran  S 
C_  ( Base `  G
) )
23 dprdspan.k . . . . 5  |-  K  =  (mrCls `  (SubGrp `  G
) )
2423mrccl 13836 . . . 4  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U.
ran  S  C_  ( Base `  G ) )  -> 
( K `  U. ran  S )  e.  (SubGrp `  G ) )
257, 22, 24syl2anc 643 . . 3  |-  ( G dom DProd  S  ->  ( K `
 U. ran  S
)  e.  (SubGrp `  G ) )
26 eqimss 3400 . . . . . . 7  |-  ( U_ k  e.  dom  S ( S `  k )  =  U. ran  S  ->  U_ k  e.  dom  S ( S `  k
)  C_  U. ran  S
)
2712, 26syl 16 . . . . . 6  |-  ( G dom DProd  S  ->  U_ k  e.  dom  S ( S `
 k )  C_  U.
ran  S )
28 iunss 4132 . . . . . 6  |-  ( U_ k  e.  dom  S ( S `  k ) 
C_  U. ran  S  <->  A. k  e.  dom  S ( S `
 k )  C_  U.
ran  S )
2927, 28sylib 189 . . . . 5  |-  ( G dom DProd  S  ->  A. k  e.  dom  S ( S `
 k )  C_  U.
ran  S )
3029r19.21bi 2804 . . . 4  |-  ( ( G dom DProd  S  /\  k  e.  dom  S )  ->  ( S `  k )  C_  U. ran  S )
317, 23, 22mrcssidd 13850 . . . . 5  |-  ( G dom DProd  S  ->  U. ran  S 
C_  ( K `  U. ran  S ) )
3231adantr 452 . . . 4  |-  ( ( G dom DProd  S  /\  k  e.  dom  S )  ->  U. ran  S  C_  ( K `  U. ran  S ) )
3330, 32sstrd 3358 . . 3  |-  ( ( G dom DProd  S  /\  k  e.  dom  S )  ->  ( S `  k )  C_  ( K `  U. ran  S
) )
341, 2, 25, 33dprdlub 15584 . 2  |-  ( G dom DProd  S  ->  ( G DProd 
S )  C_  ( K `  U. ran  S
) )
35 dprdsubg 15582 . . 3  |-  ( G dom DProd  S  ->  ( G DProd 
S )  e.  (SubGrp `  G ) )
3623mrcsscl 13845 . . 3  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U.
ran  S  C_  ( G DProd 
S )  /\  ( G DProd  S )  e.  (SubGrp `  G ) )  -> 
( K `  U. ran  S )  C_  ( G DProd  S ) )
377, 20, 35, 36syl3anc 1184 . 2  |-  ( G dom DProd  S  ->  ( K `
 U. ran  S
)  C_  ( G DProd  S ) )
3834, 37eqssd 3365 1  |-  ( G dom DProd  S  ->  ( G DProd 
S )  =  ( K `  U. ran  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705    C_ wss 3320   U.cuni 4015   U_ciun 4093   class class class wbr 4212   dom cdm 4878   ran crn 4879    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081   Basecbs 13469  Moorecmre 13807  mrClscmrc 13808  ACScacs 13810   Grpcgrp 14685  SubGrpcsubg 14938   DProd cdprd 15554
This theorem is referenced by:  dprdres  15586  dprdf1o  15590  subgdprd  15593  dprdsn  15594  dprd2dlem1  15599  dprd2da  15600  dprd2db  15601  dmdprdsplit2lem  15603
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-fzo 11136  df-seq 11324  df-hash 11619  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-0g 13727  df-gsum 13728  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-mhm 14738  df-submnd 14739  df-grp 14812  df-minusg 14813  df-sbg 14814  df-mulg 14815  df-subg 14941  df-ghm 15004  df-gim 15046  df-cntz 15116  df-oppg 15142  df-cmn 15414  df-dprd 15556
  Copyright terms: Public domain W3C validator