MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdval Unicode version

Theorem dprdval 15337
Description: The domain of definition of the internal direct product, which states that  S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdval.0  |-  .0.  =  ( 0g `  G )
dprdval.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
Assertion
Ref Expression
dprdval  |-  ( ( G dom DProd  S  /\  dom  S  =  I )  ->  ( G DProd  S
)  =  ran  (
f  e.  W  |->  ( G  gsumg  f ) ) )
Distinct variable groups:    f, h, i, I    S, f, h, i    f, G, h, i
Allowed substitution hints:    W( f, h, i)    .0. ( f, h, i)

Proof of Theorem dprdval
Dummy variables  g 
s  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . 2  |-  ( ( G dom DProd  S  /\  dom  S  =  I )  ->  G dom DProd  S )
2 reldmdprd 15334 . . . . . 6  |-  Rel  dom DProd
32brrelex2i 4812 . . . . 5  |-  ( G dom DProd  S  ->  S  e. 
_V )
43adantr 451 . . . 4  |-  ( ( G dom DProd  S  /\  dom  S  =  I )  ->  S  e.  _V )
52brrelexi 4811 . . . . . 6  |-  ( G dom DProd  s  ->  G  e.  _V )
6 breq1 4107 . . . . . . . 8  |-  ( g  =  G  ->  (
g dom DProd  s  <->  G dom DProd  s ) )
7 oveq1 5952 . . . . . . . . 9  |-  ( g  =  G  ->  (
g DProd  s )  =  ( G DProd  s ) )
8 fveq2 5608 . . . . . . . . . . . . . . . . 17  |-  ( g  =  G  ->  ( 0g `  g )  =  ( 0g `  G
) )
9 dprdval.0 . . . . . . . . . . . . . . . . 17  |-  .0.  =  ( 0g `  G )
108, 9syl6eqr 2408 . . . . . . . . . . . . . . . 16  |-  ( g  =  G  ->  ( 0g `  g )  =  .0.  )
1110sneqd 3729 . . . . . . . . . . . . . . 15  |-  ( g  =  G  ->  { ( 0g `  g ) }  =  {  .0.  } )
1211difeq2d 3370 . . . . . . . . . . . . . 14  |-  ( g  =  G  ->  ( _V  \  { ( 0g
`  g ) } )  =  ( _V 
\  {  .0.  }
) )
1312imaeq2d 5094 . . . . . . . . . . . . 13  |-  ( g  =  G  ->  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  =  ( `' h " ( _V 
\  {  .0.  }
) ) )
1413eleq1d 2424 . . . . . . . . . . . 12  |-  ( g  =  G  ->  (
( `' h "
( _V  \  {
( 0g `  g
) } ) )  e.  Fin  <->  ( `' h " ( _V  \  {  .0.  } ) )  e.  Fin ) )
1514rabbidv 2856 . . . . . . . . . . 11  |-  ( g  =  G  ->  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  e.  Fin }  =  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin } )
16 oveq1 5952 . . . . . . . . . . 11  |-  ( g  =  G  ->  (
g  gsumg  f )  =  ( G  gsumg  f ) )
1715, 16mpteq12dv 4179 . . . . . . . . . 10  |-  ( g  =  G  ->  (
f  e.  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  e.  Fin } 
|->  ( g  gsumg  f ) )  =  ( f  e.  {
h  e.  X_ i  e.  dom  s ( s `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  |->  ( G 
gsumg  f ) ) )
1817rneqd 4988 . . . . . . . . 9  |-  ( g  =  G  ->  ran  ( f  e.  {
h  e.  X_ i  e.  dom  s ( s `
 i )  |  ( `' h "
( _V  \  {
( 0g `  g
) } ) )  e.  Fin }  |->  ( g  gsumg  f ) )  =  ran  ( f  e. 
{ h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }  |->  ( G 
gsumg  f ) ) )
197, 18eqeq12d 2372 . . . . . . . 8  |-  ( g  =  G  ->  (
( g DProd  s )  =  ran  ( f  e.  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  e.  Fin } 
|->  ( g  gsumg  f ) )  <->  ( G DProd  s )  =  ran  (
f  e.  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin } 
|->  ( G  gsumg  f ) ) ) )
206, 19imbi12d 311 . . . . . . 7  |-  ( g  =  G  ->  (
( g dom DProd  s  -> 
( g DProd  s )  =  ran  ( f  e.  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  e.  Fin } 
|->  ( g  gsumg  f ) ) )  <-> 
( G dom DProd  s  -> 
( G DProd  s )  =  ran  ( f  e. 
{ h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }  |->  ( G 
gsumg  f ) ) ) ) )
21 df-br 4105 . . . . . . . . 9  |-  ( g dom DProd  s  <->  <. g ,  s >.  e.  dom DProd  )
22 fvex 5622 . . . . . . . . . . . . . . . . . 18  |-  ( s `
 i )  e. 
_V
2322rgenw 2686 . . . . . . . . . . . . . . . . 17  |-  A. i  e.  dom  s ( s `
 i )  e. 
_V
24 ixpexg 6928 . . . . . . . . . . . . . . . . 17  |-  ( A. i  e.  dom  s ( s `  i )  e.  _V  ->  X_ i  e.  dom  s ( s `
 i )  e. 
_V )
2523, 24ax-mp 8 . . . . . . . . . . . . . . . 16  |-  X_ i  e.  dom  s ( s `
 i )  e. 
_V
2625rabex 4246 . . . . . . . . . . . . . . 15  |-  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  e.  Fin }  e.  _V
2726mptex 5832 . . . . . . . . . . . . . 14  |-  ( f  e.  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  e.  Fin } 
|->  ( g  gsumg  f ) )  e. 
_V
2827rnex 5024 . . . . . . . . . . . . 13  |-  ran  (
f  e.  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  e.  Fin } 
|->  ( g  gsumg  f ) )  e. 
_V
2928rgen2w 2687 . . . . . . . . . . . 12  |-  A. g  e.  Grp  A. s  e. 
{ h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h
( A. y  e.  ( dom  h  \  { i } ) ( h `  i
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) } ran  ( f  e. 
{ h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V  \  {
( 0g `  g
) } ) )  e.  Fin }  |->  ( g  gsumg  f ) )  e. 
_V
30 df-dprd 15332 . . . . . . . . . . . . 13  |- DProd  =  ( g  e.  Grp , 
s  e.  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h ( A. y  e.  ( dom  h  \  {
i } ) ( h `  i ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) } 
|->  ran  ( f  e. 
{ h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V  \  {
( 0g `  g
) } ) )  e.  Fin }  |->  ( g  gsumg  f ) ) )
3130fmpt2x 6277 . . . . . . . . . . . 12  |-  ( A. g  e.  Grp  A. s  e.  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h
( A. y  e.  ( dom  h  \  { i } ) ( h `  i
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) } ran  ( f  e. 
{ h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V  \  {
( 0g `  g
) } ) )  e.  Fin }  |->  ( g  gsumg  f ) )  e. 
_V 
<-> DProd  : U_ g  e.  Grp  ( { g }  X.  { h  |  (
h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h
( A. y  e.  ( dom  h  \  { i } ) ( h `  i
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) } ) --> _V )
3229, 31mpbi 199 . . . . . . . . . . 11  |- DProd  : U_ g  e.  Grp  ( { g }  X.  {
h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h ( A. y  e.  ( dom  h  \  {
i } ) ( h `  i ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) } ) --> _V
3332fdmi 5477 . . . . . . . . . 10  |-  dom DProd  =  U_ g  e.  Grp  ( { g }  X.  {
h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h ( A. y  e.  ( dom  h  \  {
i } ) ( h `  i ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) } )
3433eleq2i 2422 . . . . . . . . 9  |-  ( <.
g ,  s >.  e.  dom DProd 
<-> 
<. g ,  s >.  e.  U_ g  e.  Grp  ( { g }  X.  { h  |  (
h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h
( A. y  e.  ( dom  h  \  { i } ) ( h `  i
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) } ) )
35 opeliunxp 4822 . . . . . . . . 9  |-  ( <.
g ,  s >.  e.  U_ g  e.  Grp  ( { g }  X.  { h  |  (
h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h
( A. y  e.  ( dom  h  \  { i } ) ( h `  i
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) } )  <->  ( g  e. 
Grp  /\  s  e.  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h ( A. y  e.  ( dom  h  \  {
i } ) ( h `  i ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) } ) )
3621, 34, 353bitri 262 . . . . . . . 8  |-  ( g dom DProd  s  <->  ( g  e.  Grp  /\  s  e. 
{ h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h
( A. y  e.  ( dom  h  \  { i } ) ( h `  i
)  C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) } ) )
3730ovmpt4g 6057 . . . . . . . . 9  |-  ( ( g  e.  Grp  /\  s  e.  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h ( A. y  e.  ( dom  h  \  {
i } ) ( h `  i ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) }  /\  ran  ( f  e.  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  { ( 0g
`  g ) } ) )  e.  Fin } 
|->  ( g  gsumg  f ) )  e. 
_V )  ->  (
g DProd  s )  =  ran  ( f  e. 
{ h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V  \  {
( 0g `  g
) } ) )  e.  Fin }  |->  ( g  gsumg  f ) ) )
3828, 37mp3an3 1266 . . . . . . . 8  |-  ( ( g  e.  Grp  /\  s  e.  { h  |  ( h : dom  h --> (SubGrp `  g )  /\  A. i  e.  dom  h ( A. y  e.  ( dom  h  \  {
i } ) ( h `  i ) 
C_  ( (Cntz `  g ) `  (
h `  y )
)  /\  ( (
h `  i )  i^i  ( (mrCls `  (SubGrp `  g ) ) `  U. ( h " ( dom  h  \  { i } ) ) ) )  =  { ( 0g `  g ) } ) ) } )  ->  ( g DProd  s )  =  ran  ( f  e.  {
h  e.  X_ i  e.  dom  s ( s `
 i )  |  ( `' h "
( _V  \  {
( 0g `  g
) } ) )  e.  Fin }  |->  ( g  gsumg  f ) ) )
3936, 38sylbi 187 . . . . . . 7  |-  ( g dom DProd  s  ->  (
g DProd  s )  =  ran  ( f  e. 
{ h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V  \  {
( 0g `  g
) } ) )  e.  Fin }  |->  ( g  gsumg  f ) ) )
4020, 39vtoclg 2919 . . . . . 6  |-  ( G  e.  _V  ->  ( G dom DProd  s  ->  ( G DProd  s )  =  ran  ( f  e.  {
h  e.  X_ i  e.  dom  s ( s `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  |->  ( G 
gsumg  f ) ) ) )
415, 40mpcom 32 . . . . 5  |-  ( G dom DProd  s  ->  ( G DProd  s )  =  ran  ( f  e.  {
h  e.  X_ i  e.  dom  s ( s `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  |->  ( G 
gsumg  f ) ) )
4241sbcth 3081 . . . 4  |-  ( S  e.  _V  ->  [. S  /  s ]. ( G dom DProd  s  ->  ( G DProd  s )  =  ran  ( f  e.  {
h  e.  X_ i  e.  dom  s ( s `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  |->  ( G 
gsumg  f ) ) ) )
434, 42syl 15 . . 3  |-  ( ( G dom DProd  S  /\  dom  S  =  I )  ->  [. S  /  s ]. ( G dom DProd  s  -> 
( G DProd  s )  =  ran  ( f  e. 
{ h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }  |->  ( G 
gsumg  f ) ) ) )
44 simpr 447 . . . . . 6  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  s  =  S )
4544breq2d 4116 . . . . 5  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  ( G dom DProd  s  <->  G dom DProd  S )
)
4644oveq2d 5961 . . . . . 6  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  ( G DProd  s )  =  ( G DProd 
S ) )
4744dmeqd 4963 . . . . . . . . . . . . 13  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  dom  s  =  dom  S )
48 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  dom  S  =  I )
4947, 48eqtrd 2390 . . . . . . . . . . . 12  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  dom  s  =  I )
50 ixpeq1 6915 . . . . . . . . . . . 12  |-  ( dom  s  =  I  ->  X_ i  e.  dom  s
( s `  i
)  =  X_ i  e.  I  ( s `  i ) )
5149, 50syl 15 . . . . . . . . . . 11  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  X_ i  e. 
dom  s ( s `
 i )  = 
X_ i  e.  I 
( s `  i
) )
5244fveq1d 5610 . . . . . . . . . . . . 13  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  ( s `  i )  =  ( S `  i ) )
5352ralrimivw 2703 . . . . . . . . . . . 12  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  A. i  e.  I  ( s `  i )  =  ( S `  i ) )
54 ixpeq2 6918 . . . . . . . . . . . 12  |-  ( A. i  e.  I  (
s `  i )  =  ( S `  i )  ->  X_ i  e.  I  ( s `  i )  =  X_ i  e.  I  ( S `  i )
)
5553, 54syl 15 . . . . . . . . . . 11  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  X_ i  e.  I  ( s `  i )  =  X_ i  e.  I  ( S `  i )
)
5651, 55eqtrd 2390 . . . . . . . . . 10  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  X_ i  e. 
dom  s ( s `
 i )  = 
X_ i  e.  I 
( S `  i
) )
57 biidd 228 . . . . . . . . . 10  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  ( ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin  <->  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin ) )
5856, 57rabeqbidv 2859 . . . . . . . . 9  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  =  { h  e.  X_ i  e.  I 
( S `  i
)  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin } )
59 dprdval.w . . . . . . . . 9  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
6058, 59syl6eqr 2408 . . . . . . . 8  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin }  =  W )
61 eqidd 2359 . . . . . . . 8  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  ( G  gsumg  f )  =  ( G 
gsumg  f ) )
6260, 61mpteq12dv 4179 . . . . . . 7  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  ( f  e.  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }  |->  ( G 
gsumg  f ) )  =  ( f  e.  W  |->  ( G  gsumg  f ) ) )
6362rneqd 4988 . . . . . 6  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  ran  ( f  e.  { h  e.  X_ i  e.  dom  s ( s `  i )  |  ( `' h " ( _V 
\  {  .0.  }
) )  e.  Fin } 
|->  ( G  gsumg  f ) )  =  ran  ( f  e.  W  |->  ( G  gsumg  f ) ) )
6446, 63eqeq12d 2372 . . . . 5  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  ( ( G DProd  s )  =  ran  ( f  e.  {
h  e.  X_ i  e.  dom  s ( s `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  |->  ( G 
gsumg  f ) )  <->  ( G DProd  S )  =  ran  (
f  e.  W  |->  ( G  gsumg  f ) ) ) )
6545, 64imbi12d 311 . . . 4  |-  ( ( ( G dom DProd  S  /\  dom  S  =  I )  /\  s  =  S )  ->  ( ( G dom DProd  s  ->  ( G DProd  s )  =  ran  ( f  e.  {
h  e.  X_ i  e.  dom  s ( s `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  |->  ( G 
gsumg  f ) ) )  <-> 
( G dom DProd  S  -> 
( G DProd  S )  =  ran  ( f  e.  W  |->  ( G  gsumg  f ) ) ) ) )
664, 65sbcied 3103 . . 3  |-  ( ( G dom DProd  S  /\  dom  S  =  I )  ->  ( [. S  /  s ]. ( G dom DProd  s  ->  ( G DProd  s )  =  ran  ( f  e.  {
h  e.  X_ i  e.  dom  s ( s `
 i )  |  ( `' h "
( _V  \  {  .0.  } ) )  e. 
Fin }  |->  ( G 
gsumg  f ) ) )  <-> 
( G dom DProd  S  -> 
( G DProd  S )  =  ran  ( f  e.  W  |->  ( G  gsumg  f ) ) ) ) )
6743, 66mpbid 201 . 2  |-  ( ( G dom DProd  S  /\  dom  S  =  I )  ->  ( G dom DProd  S  ->  ( G DProd  S
)  =  ran  (
f  e.  W  |->  ( G  gsumg  f ) ) ) )
681, 67mpd 14 1  |-  ( ( G dom DProd  S  /\  dom  S  =  I )  ->  ( G DProd  S
)  =  ran  (
f  e.  W  |->  ( G  gsumg  f ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   {cab 2344   A.wral 2619   {crab 2623   _Vcvv 2864   [.wsbc 3067    \ cdif 3225    i^i cin 3227    C_ wss 3228   {csn 3716   <.cop 3719   U.cuni 3908   U_ciun 3986   class class class wbr 4104    e. cmpt 4158    X. cxp 4769   `'ccnv 4770   dom cdm 4771   ran crn 4772   "cima 4774   -->wf 5333   ` cfv 5337  (class class class)co 5945   X_cixp 6905   Fincfn 6951   0gc0g 13499    gsumg cgsu 13500  mrClscmrc 13584   Grpcgrp 14461  SubGrpcsubg 14714  Cntzccntz 14890   DProd cdprd 15330
This theorem is referenced by:  eldprd  15338  dprdlub  15360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-ixp 6906  df-dprd 15332
  Copyright terms: Public domain W3C validator