MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdwd Unicode version

Theorem dprdwd 15557
Description: The property of being a finitely supported function in the family  S. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdff.w  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
dprdff.1  |-  ( ph  ->  G dom DProd  S )
dprdff.2  |-  ( ph  ->  dom  S  =  I )
dprdwd.3  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  ( S `  x
) )
dprdwd.4  |-  ( ph  ->  ( `' ( x  e.  I  |->  A )
" ( _V  \  {  .0.  } ) )  e.  Fin )
Assertion
Ref Expression
dprdwd  |-  ( ph  ->  ( x  e.  I  |->  A )  e.  W
)
Distinct variable groups:    A, h    x, h    x, G    h, i, I, x    .0. , h    ph, x    S, h, i, x
Allowed substitution hints:    ph( h, i)    A( x, i)    G( h, i)    W( x, h, i)    .0. ( x, i)

Proof of Theorem dprdwd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dprdwd.3 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  ( S `  x
) )
21ralrimiva 2781 . . 3  |-  ( ph  ->  A. x  e.  I  A  e.  ( S `  x ) )
3 eqid 2435 . . . 4  |-  ( x  e.  I  |->  A )  =  ( x  e.  I  |->  A )
43fnmpt 5562 . . 3  |-  ( A. x  e.  I  A  e.  ( S `  x
)  ->  ( x  e.  I  |->  A )  Fn  I )
52, 4syl 16 . 2  |-  ( ph  ->  ( x  e.  I  |->  A )  Fn  I
)
6 simpr 448 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
73fvmpt2 5803 . . . . . 6  |-  ( ( x  e.  I  /\  A  e.  ( S `  x ) )  -> 
( ( x  e.  I  |->  A ) `  x )  =  A )
86, 1, 7syl2anc 643 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( x  e.  I  |->  A ) `  x
)  =  A )
98, 1eqeltrd 2509 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( x  e.  I  |->  A ) `  x
)  e.  ( S `
 x ) )
109ralrimiva 2781 . . 3  |-  ( ph  ->  A. x  e.  I 
( ( x  e.  I  |->  A ) `  x )  e.  ( S `  x ) )
11 nfv 1629 . . . 4  |-  F/ y ( ( x  e.  I  |->  A ) `  x )  e.  ( S `  x )
12 nffvmpt1 5727 . . . . 5  |-  F/_ x
( ( x  e.  I  |->  A ) `  y )
1312nfel1 2581 . . . 4  |-  F/ x
( ( x  e.  I  |->  A ) `  y )  e.  ( S `  y )
14 fveq2 5719 . . . . 5  |-  ( x  =  y  ->  (
( x  e.  I  |->  A ) `  x
)  =  ( ( x  e.  I  |->  A ) `  y ) )
15 fveq2 5719 . . . . 5  |-  ( x  =  y  ->  ( S `  x )  =  ( S `  y ) )
1614, 15eleq12d 2503 . . . 4  |-  ( x  =  y  ->  (
( ( x  e.  I  |->  A ) `  x )  e.  ( S `  x )  <-> 
( ( x  e.  I  |->  A ) `  y )  e.  ( S `  y ) ) )
1711, 13, 16cbvral 2920 . . 3  |-  ( A. x  e.  I  (
( x  e.  I  |->  A ) `  x
)  e.  ( S `
 x )  <->  A. y  e.  I  ( (
x  e.  I  |->  A ) `  y )  e.  ( S `  y ) )
1810, 17sylib 189 . 2  |-  ( ph  ->  A. y  e.  I 
( ( x  e.  I  |->  A ) `  y )  e.  ( S `  y ) )
19 dprdwd.4 . 2  |-  ( ph  ->  ( `' ( x  e.  I  |->  A )
" ( _V  \  {  .0.  } ) )  e.  Fin )
20 dprdff.w . . 3  |-  W  =  { h  e.  X_ i  e.  I  ( S `  i )  |  ( `' h " ( _V  \  {  .0.  } ) )  e. 
Fin }
21 dprdff.1 . . 3  |-  ( ph  ->  G dom DProd  S )
22 dprdff.2 . . 3  |-  ( ph  ->  dom  S  =  I )
2320, 21, 22dprdw 15556 . 2  |-  ( ph  ->  ( ( x  e.  I  |->  A )  e.  W  <->  ( ( x  e.  I  |->  A )  Fn  I  /\  A. y  e.  I  (
( x  e.  I  |->  A ) `  y
)  e.  ( S `
 y )  /\  ( `' ( x  e.  I  |->  A ) "
( _V  \  {  .0.  } ) )  e. 
Fin ) ) )
245, 18, 19, 23mpbir3and 1137 1  |-  ( ph  ->  ( x  e.  I  |->  A )  e.  W
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701   _Vcvv 2948    \ cdif 3309   {csn 3806   class class class wbr 4204    e. cmpt 4258   `'ccnv 4868   dom cdm 4869   "cima 4872    Fn wfn 5440   ` cfv 5445   X_cixp 7054   Fincfn 7100   DProd cdprd 15542
This theorem is referenced by:  dprdfid  15563  dprdfinv  15565  dprdfadd  15566  dmdprdsplitlem  15583  dpjidcl  15604  dchrptlem3  21038
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-oprab 6076  df-mpt2 6077  df-ixp 7055  df-dprd 15544
  Copyright terms: Public domain W3C validator