MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dquartlem1 Unicode version

Theorem dquartlem1 20551
Description: Lemma for dquart 20553. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dquart.b  |-  ( ph  ->  B  e.  CC )
dquart.c  |-  ( ph  ->  C  e.  CC )
dquart.x  |-  ( ph  ->  X  e.  CC )
dquart.s  |-  ( ph  ->  S  e.  CC )
dquart.m  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
dquart.m0  |-  ( ph  ->  M  =/=  0 )
dquart.i  |-  ( ph  ->  I  e.  CC )
dquart.i2  |-  ( ph  ->  ( I ^ 2 )  =  ( (
-u ( S ^
2 )  -  ( B  /  2 ) )  +  ( ( C  /  4 )  /  S ) ) )
Assertion
Ref Expression
dquartlem1  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  =  0  <-> 
( X  =  (
-u S  +  I
)  \/  X  =  ( -u S  -  I ) ) ) )

Proof of Theorem dquartlem1
StepHypRef Expression
1 dquart.x . . . . . . 7  |-  ( ph  ->  X  e.  CC )
21sqcld 11441 . . . . . 6  |-  ( ph  ->  ( X ^ 2 )  e.  CC )
3 dquart.m . . . . . . . . 9  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
4 2cn 9995 . . . . . . . . . . 11  |-  2  e.  CC
5 dquart.s . . . . . . . . . . 11  |-  ( ph  ->  S  e.  CC )
6 mulcl 9000 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( 2  x.  S
)  e.  CC )
74, 5, 6sylancr 645 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  S
)  e.  CC )
87sqcld 11441 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  e.  CC )
93, 8eqeltrd 2454 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
10 dquart.b . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
119, 10addcld 9033 . . . . . . 7  |-  ( ph  ->  ( M  +  B
)  e.  CC )
1211halfcld 10137 . . . . . 6  |-  ( ph  ->  ( ( M  +  B )  /  2
)  e.  CC )
132, 12addcld 9033 . . . . 5  |-  ( ph  ->  ( ( X ^
2 )  +  ( ( M  +  B
)  /  2 ) )  e.  CC )
149halfcld 10137 . . . . . . . 8  |-  ( ph  ->  ( M  /  2
)  e.  CC )
1514, 1mulcld 9034 . . . . . . 7  |-  ( ph  ->  ( ( M  / 
2 )  x.  X
)  e.  CC )
16 dquart.c . . . . . . . 8  |-  ( ph  ->  C  e.  CC )
17 4cn 9999 . . . . . . . . 9  |-  4  e.  CC
1817a1i 11 . . . . . . . 8  |-  ( ph  ->  4  e.  CC )
19 4nn 10060 . . . . . . . . . 10  |-  4  e.  NN
2019nnne0i 9959 . . . . . . . . 9  |-  4  =/=  0
2120a1i 11 . . . . . . . 8  |-  ( ph  ->  4  =/=  0 )
2216, 18, 21divcld 9715 . . . . . . 7  |-  ( ph  ->  ( C  /  4
)  e.  CC )
2315, 22subcld 9336 . . . . . 6  |-  ( ph  ->  ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  e.  CC )
24 dquart.m0 . . . . . . . . . 10  |-  ( ph  ->  M  =/=  0 )
253, 24eqnetrrd 2563 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  =/=  0 )
26 sqne0 11368 . . . . . . . . . 10  |-  ( ( 2  x.  S )  e.  CC  ->  (
( ( 2  x.  S ) ^ 2 )  =/=  0  <->  (
2  x.  S )  =/=  0 ) )
277, 26syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  S ) ^
2 )  =/=  0  <->  ( 2  x.  S )  =/=  0 ) )
2825, 27mpbid 202 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  S
)  =/=  0 )
29 mulne0b 9588 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( ( 2  =/=  0  /\  S  =/=  0 )  <->  ( 2  x.  S )  =/=  0 ) )
304, 5, 29sylancr 645 . . . . . . . 8  |-  ( ph  ->  ( ( 2  =/=  0  /\  S  =/=  0 )  <->  ( 2  x.  S )  =/=  0 ) )
3128, 30mpbird 224 . . . . . . 7  |-  ( ph  ->  ( 2  =/=  0  /\  S  =/=  0
) )
3231simprd 450 . . . . . 6  |-  ( ph  ->  S  =/=  0 )
3323, 5, 32divcld 9715 . . . . 5  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
)  e.  CC )
3413, 33addcld 9033 . . . 4  |-  ( ph  ->  ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2
) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  e.  CC )
354a1i 11 . . . 4  |-  ( ph  ->  2  e.  CC )
36 2ne0 10008 . . . . 5  |-  2  =/=  0
3736a1i 11 . . . 4  |-  ( ph  ->  2  =/=  0 )
3834, 35, 37diveq0ad 9725 . . 3  |-  ( ph  ->  ( ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2 ) )  +  ( ( ( ( M  /  2
)  x.  X )  -  ( C  / 
4 ) )  /  S ) )  / 
2 )  =  0  <-> 
( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2
) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  0 ) )
392, 12, 33addassd 9036 . . . . . 6  |-  ( ph  ->  ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2
) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  ( ( X ^ 2 )  +  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) ) ) )
4039oveq1d 6028 . . . . 5  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( ( X ^ 2 )  +  ( ( ( M  +  B
)  /  2 )  +  ( ( ( ( M  /  2
)  x.  X )  -  ( C  / 
4 ) )  /  S ) ) )  /  2 ) )
4112, 33addcld 9033 . . . . . 6  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  e.  CC )
422, 41, 35, 37divdird 9753 . . . . 5  |-  ( ph  ->  ( ( ( X ^ 2 )  +  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) ) )  /  2 )  =  ( ( ( X ^ 2 )  /  2 )  +  ( ( ( ( M  +  B )  /  2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
) ) )
432, 35, 37divrec2d 9719 . . . . . 6  |-  ( ph  ->  ( ( X ^
2 )  /  2
)  =  ( ( 1  /  2 )  x.  ( X ^
2 ) ) )
4415, 22, 5, 32divsubdird 9754 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
)  =  ( ( ( ( M  / 
2 )  x.  X
)  /  S )  -  ( ( C  /  4 )  /  S ) ) )
4514, 1, 5, 32div23d 9752 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M  /  2 )  x.  X )  /  S
)  =  ( ( ( M  /  2
)  /  S )  x.  X ) )
465sqvald 11440 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( S ^ 2 )  =  ( S  x.  S ) )
4746oveq2d 6029 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  x.  ( S ^ 2 ) )  =  ( 2  x.  ( S  x.  S
) ) )
48 sqmul 11365 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( ( 2  x.  S ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( S ^
2 ) ) )
494, 5, 48sylancr 645 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( S ^
2 ) ) )
504sqvali 11381 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
5150oveq1i 6023 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2 ^ 2 )  x.  ( S ^
2 ) )  =  ( ( 2  x.  2 )  x.  ( S ^ 2 ) )
5249, 51syl6eq 2428 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  =  ( ( 2  x.  2 )  x.  ( S ^
2 ) ) )
535sqcld 11441 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( S ^ 2 )  e.  CC )
5435, 35, 53mulassd 9037 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( 2  x.  2 )  x.  ( S ^ 2 ) )  =  ( 2  x.  ( 2  x.  ( S ^ 2 ) ) ) )
553, 52, 543eqtrd 2416 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  =  ( 2  x.  ( 2  x.  ( S ^ 2 ) ) ) )
5655oveq1d 6028 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( M  /  2
)  =  ( ( 2  x.  ( 2  x.  ( S ^
2 ) ) )  /  2 ) )
57 mulcl 9000 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  CC  /\  ( S ^ 2 )  e.  CC )  -> 
( 2  x.  ( S ^ 2 ) )  e.  CC )
584, 53, 57sylancr 645 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 2  x.  ( S ^ 2 ) )  e.  CC )
5958, 35, 37divcan3d 9720 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2  x.  ( 2  x.  ( S ^ 2 ) ) )  /  2 )  =  ( 2  x.  ( S ^ 2 ) ) )
6056, 59eqtrd 2412 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  /  2
)  =  ( 2  x.  ( S ^
2 ) ) )
6135, 5, 5mulassd 9037 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  x.  S )  x.  S
)  =  ( 2  x.  ( S  x.  S ) ) )
6247, 60, 613eqtr4d 2422 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M  /  2
)  =  ( ( 2  x.  S )  x.  S ) )
6362oveq1d 6028 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( M  / 
2 )  /  S
)  =  ( ( ( 2  x.  S
)  x.  S )  /  S ) )
647, 5, 32divcan4d 9721 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2  x.  S )  x.  S )  /  S
)  =  ( 2  x.  S ) )
6563, 64eqtrd 2412 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( M  / 
2 )  /  S
)  =  ( 2  x.  S ) )
6665oveq1d 6028 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M  /  2 )  /  S )  x.  X
)  =  ( ( 2  x.  S )  x.  X ) )
6745, 66eqtrd 2412 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( M  /  2 )  x.  X )  /  S
)  =  ( ( 2  x.  S )  x.  X ) )
6867oveq1d 6028 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  /  S )  -  (
( C  /  4
)  /  S ) )  =  ( ( ( 2  x.  S
)  x.  X )  -  ( ( C  /  4 )  /  S ) ) )
6944, 68eqtrd 2412 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
)  =  ( ( ( 2  x.  S
)  x.  X )  -  ( ( C  /  4 )  /  S ) ) )
7069oveq2d 6029 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  ( ( ( M  +  B )  /  2 )  +  ( ( ( 2  x.  S )  x.  X )  -  (
( C  /  4
)  /  S ) ) ) )
717, 1mulcld 9034 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  S )  x.  X
)  e.  CC )
7222, 5, 32divcld 9715 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  / 
4 )  /  S
)  e.  CC )
7312, 71, 72addsub12d 9359 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( 2  x.  S )  x.  X
)  -  ( ( C  /  4 )  /  S ) ) )  =  ( ( ( 2  x.  S
)  x.  X )  +  ( ( ( M  +  B )  /  2 )  -  ( ( C  / 
4 )  /  S
) ) ) )
7470, 73eqtrd 2412 . . . . . . . 8  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  ( ( ( 2  x.  S )  x.  X )  +  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) ) ) )
7574oveq1d 6028 . . . . . . 7  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( ( ( 2  x.  S )  x.  X
)  +  ( ( ( M  +  B
)  /  2 )  -  ( ( C  /  4 )  /  S ) ) )  /  2 ) )
7612, 72subcld 9336 . . . . . . . 8  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  e.  CC )
7771, 76, 35, 37divdird 9753 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 2  x.  S )  x.  X )  +  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) ) )  /  2
)  =  ( ( ( ( 2  x.  S )  x.  X
)  /  2 )  +  ( ( ( ( M  +  B
)  /  2 )  -  ( ( C  /  4 )  /  S ) )  / 
2 ) ) )
7835, 5, 1mulassd 9037 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  S )  x.  X
)  =  ( 2  x.  ( S  x.  X ) ) )
7978oveq1d 6028 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  S )  x.  X )  /  2
)  =  ( ( 2  x.  ( S  x.  X ) )  /  2 ) )
805, 1mulcld 9034 . . . . . . . . . 10  |-  ( ph  ->  ( S  x.  X
)  e.  CC )
8180, 35, 37divcan3d 9720 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( S  x.  X
) )  /  2
)  =  ( S  x.  X ) )
8279, 81eqtrd 2412 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  S )  x.  X )  /  2
)  =  ( S  x.  X ) )
8353negcld 9323 . . . . . . . . . . . 12  |-  ( ph  -> 
-u ( S ^
2 )  e.  CC )
8410halfcld 10137 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  /  2
)  e.  CC )
8583, 84subcld 9336 . . . . . . . . . . 11  |-  ( ph  ->  ( -u ( S ^ 2 )  -  ( B  /  2
) )  e.  CC )
8653, 85, 72subsub4d 9367 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( S ^ 2 )  -  ( -u ( S ^
2 )  -  ( B  /  2 ) ) )  -  ( ( C  /  4 )  /  S ) )  =  ( ( S ^ 2 )  -  ( ( -u ( S ^ 2 )  -  ( B  /  2
) )  +  ( ( C  /  4
)  /  S ) ) ) )
879, 10, 35, 37divdird 9753 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M  +  B )  /  2
)  =  ( ( M  /  2 )  +  ( B  / 
2 ) ) )
88532timesd 10135 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2  x.  ( S ^ 2 ) )  =  ( ( S ^ 2 )  +  ( S ^ 2 ) ) )
8960, 88eqtrd 2412 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  /  2
)  =  ( ( S ^ 2 )  +  ( S ^
2 ) ) )
9089oveq1d 6028 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M  / 
2 )  +  ( B  /  2 ) )  =  ( ( ( S ^ 2 )  +  ( S ^ 2 ) )  +  ( B  / 
2 ) ) )
9187, 90eqtrd 2412 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  +  B )  /  2
)  =  ( ( ( S ^ 2 )  +  ( S ^ 2 ) )  +  ( B  / 
2 ) ) )
9253, 53, 84addassd 9036 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S ^ 2 )  +  ( S ^ 2 ) )  +  ( B  /  2 ) )  =  ( ( S ^ 2 )  +  ( ( S ^ 2 )  +  ( B  /  2
) ) ) )
9353, 84addcld 9033 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( S ^
2 )  +  ( B  /  2 ) )  e.  CC )
9453, 93subnegd 9343 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S ^
2 )  -  -u (
( S ^ 2 )  +  ( B  /  2 ) ) )  =  ( ( S ^ 2 )  +  ( ( S ^ 2 )  +  ( B  /  2
) ) ) )
9553, 84negdi2d 9350 . . . . . . . . . . . . . 14  |-  ( ph  -> 
-u ( ( S ^ 2 )  +  ( B  /  2
) )  =  (
-u ( S ^
2 )  -  ( B  /  2 ) ) )
9695oveq2d 6029 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S ^
2 )  -  -u (
( S ^ 2 )  +  ( B  /  2 ) ) )  =  ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  /  2
) ) ) )
9794, 96eqtr3d 2414 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S ^
2 )  +  ( ( S ^ 2 )  +  ( B  /  2 ) ) )  =  ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  /  2
) ) ) )
9891, 92, 973eqtrd 2416 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  +  B )  /  2
)  =  ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  /  2
) ) ) )
9998oveq1d 6028 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  =  ( ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  / 
2 ) ) )  -  ( ( C  /  4 )  /  S ) ) )
100 dquart.i2 . . . . . . . . . . 11  |-  ( ph  ->  ( I ^ 2 )  =  ( (
-u ( S ^
2 )  -  ( B  /  2 ) )  +  ( ( C  /  4 )  /  S ) ) )
101100oveq2d 6029 . . . . . . . . . 10  |-  ( ph  ->  ( ( S ^
2 )  -  (
I ^ 2 ) )  =  ( ( S ^ 2 )  -  ( ( -u ( S ^ 2 )  -  ( B  / 
2 ) )  +  ( ( C  / 
4 )  /  S
) ) ) )
10286, 99, 1013eqtr4d 2422 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
103102oveq1d 6028 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 )  -  ( ( C  / 
4 )  /  S
) )  /  2
)  =  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) )
10482, 103oveq12d 6031 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 2  x.  S )  x.  X )  / 
2 )  +  ( ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  /  2 ) )  =  ( ( S  x.  X )  +  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) ) )
10575, 77, 1043eqtrd 2416 . . . . . 6  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( S  x.  X )  +  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) ) )
10643, 105oveq12d 6031 . . . . 5  |-  ( ph  ->  ( ( ( X ^ 2 )  / 
2 )  +  ( ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  /  2 ) )  =  ( ( ( 1  /  2 )  x.  ( X ^
2 ) )  +  ( ( S  x.  X )  +  ( ( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) ) ) )
10740, 42, 1063eqtrd 2416 . . . 4  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( ( 1  /  2
)  x.  ( X ^ 2 ) )  +  ( ( S  x.  X )  +  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2
) ) ) )
108107eqeq1d 2388 . . 3  |-  ( ph  ->  ( ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2 ) )  +  ( ( ( ( M  /  2
)  x.  X )  -  ( C  / 
4 ) )  /  S ) )  / 
2 )  =  0  <-> 
( ( ( 1  /  2 )  x.  ( X ^ 2 ) )  +  ( ( S  x.  X
)  +  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  0 ) )
10938, 108bitr3d 247 . 2  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  =  0  <-> 
( ( ( 1  /  2 )  x.  ( X ^ 2 ) )  +  ( ( S  x.  X
)  +  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  0 ) )
110 ax-1cn 8974 . . . 4  |-  1  e.  CC
111 halfcl 10118 . . . 4  |-  ( 1  e.  CC  ->  (
1  /  2 )  e.  CC )
112110, 111mp1i 12 . . 3  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
113 ax-1ne0 8985 . . . . 5  |-  1  =/=  0
114110, 4, 113, 36divne0i 9687 . . . 4  |-  ( 1  /  2 )  =/=  0
115114a1i 11 . . 3  |-  ( ph  ->  ( 1  /  2
)  =/=  0 )
116 dquart.i . . . . . 6  |-  ( ph  ->  I  e.  CC )
117116sqcld 11441 . . . . 5  |-  ( ph  ->  ( I ^ 2 )  e.  CC )
11853, 117subcld 9336 . . . 4  |-  ( ph  ->  ( ( S ^
2 )  -  (
I ^ 2 ) )  e.  CC )
119118halfcld 10137 . . 3  |-  ( ph  ->  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2
)  e.  CC )
120110a1i 11 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
1214, 36pm3.2i 442 . . . . . . . . . 10  |-  ( 2  e.  CC  /\  2  =/=  0 )
122121a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
123 divmuldiv 9639 . . . . . . . . 9  |-  ( ( ( 1  e.  CC  /\  ( ( S ^
2 )  -  (
I ^ 2 ) )  e.  CC )  /\  ( ( 2  e.  CC  /\  2  =/=  0 )  /\  (
2  e.  CC  /\  2  =/=  0 ) ) )  ->  ( (
1  /  2 )  x.  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) )  =  ( ( 1  x.  ( ( S ^
2 )  -  (
I ^ 2 ) ) )  /  (
2  x.  2 ) ) )
124120, 118, 122, 122, 123syl22anc 1185 . . . . . . . 8  |-  ( ph  ->  ( ( 1  / 
2 )  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) )  =  ( ( 1  x.  ( ( S ^ 2 )  -  ( I ^
2 ) ) )  /  ( 2  x.  2 ) ) )
125118mulid2d 9032 . . . . . . . . 9  |-  ( ph  ->  ( 1  x.  (
( S ^ 2 )  -  ( I ^ 2 ) ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
126 2t2e4 10052 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
127126a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  2 )  =  4 )
128125, 127oveq12d 6031 . . . . . . . 8  |-  ( ph  ->  ( ( 1  x.  ( ( S ^
2 )  -  (
I ^ 2 ) ) )  /  (
2  x.  2 ) )  =  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  4 ) )
129124, 128eqtrd 2412 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 )  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) )  =  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  4 ) )
130129oveq2d 6029 . . . . . 6  |-  ( ph  ->  ( 4  x.  (
( 1  /  2
)  x.  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  ( 4  x.  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
4 ) ) )
131118, 18, 21divcan2d 9717 . . . . . 6  |-  ( ph  ->  ( 4  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  4 ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
132130, 131eqtrd 2412 . . . . 5  |-  ( ph  ->  ( 4  x.  (
( 1  /  2
)  x.  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
133132oveq2d 6029 . . . 4  |-  ( ph  ->  ( ( S ^
2 )  -  (
4  x.  ( ( 1  /  2 )  x.  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) ) ) )  =  ( ( S ^ 2 )  -  ( ( S ^ 2 )  -  ( I ^ 2 ) ) ) )
13453, 117nncand 9341 . . . 4  |-  ( ph  ->  ( ( S ^
2 )  -  (
( S ^ 2 )  -  ( I ^ 2 ) ) )  =  ( I ^ 2 ) )
135133, 134eqtr2d 2413 . . 3  |-  ( ph  ->  ( I ^ 2 )  =  ( ( S ^ 2 )  -  ( 4  x.  ( ( 1  / 
2 )  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) ) ) ) )
136112, 115, 5, 119, 1, 116, 135quad2 20539 . 2  |-  ( ph  ->  ( ( ( ( 1  /  2 )  x.  ( X ^
2 ) )  +  ( ( S  x.  X )  +  ( ( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) ) )  =  0  <-> 
( X  =  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  \/  X  =  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) ) ) ) )
1374, 36recidi 9670 . . . . . 6  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
138137oveq2i 6024 . . . . 5  |-  ( (
-u S  +  I
)  /  ( 2  x.  ( 1  / 
2 ) ) )  =  ( ( -u S  +  I )  /  1 )
1395negcld 9323 . . . . . . 7  |-  ( ph  -> 
-u S  e.  CC )
140139, 116addcld 9033 . . . . . 6  |-  ( ph  ->  ( -u S  +  I )  e.  CC )
141140div1d 9707 . . . . 5  |-  ( ph  ->  ( ( -u S  +  I )  /  1
)  =  ( -u S  +  I )
)
142138, 141syl5eq 2424 . . . 4  |-  ( ph  ->  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  =  ( -u S  +  I )
)
143142eqeq2d 2391 . . 3  |-  ( ph  ->  ( X  =  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  <->  X  =  ( -u S  +  I ) ) )
144137oveq2i 6024 . . . . 5  |-  ( (
-u S  -  I
)  /  ( 2  x.  ( 1  / 
2 ) ) )  =  ( ( -u S  -  I )  /  1 )
145139, 116subcld 9336 . . . . . 6  |-  ( ph  ->  ( -u S  -  I )  e.  CC )
146145div1d 9707 . . . . 5  |-  ( ph  ->  ( ( -u S  -  I )  /  1
)  =  ( -u S  -  I )
)
147144, 146syl5eq 2424 . . . 4  |-  ( ph  ->  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) )  =  ( -u S  -  I )
)
148147eqeq2d 2391 . . 3  |-  ( ph  ->  ( X  =  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) )  <->  X  =  ( -u S  -  I ) ) )
149143, 148orbi12d 691 . 2  |-  ( ph  ->  ( ( X  =  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  \/  X  =  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) ) )  <->  ( X  =  ( -u S  +  I )  \/  X  =  ( -u S  -  I ) ) ) )
150109, 136, 1493bitrd 271 1  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  =  0  <-> 
( X  =  (
-u S  +  I
)  \/  X  =  ( -u S  -  I ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2543  (class class class)co 6013   CCcc 8914   0cc0 8916   1c1 8917    + caddc 8919    x. cmul 8921    - cmin 9216   -ucneg 9217    / cdiv 9602   2c2 9974   4c4 9976   ^cexp 11302
This theorem is referenced by:  dquart  20553
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-n0 10147  df-z 10208  df-uz 10414  df-seq 11244  df-exp 11303
  Copyright terms: Public domain W3C validator