MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dquartlem1 Unicode version

Theorem dquartlem1 20147
Description: Lemma for dquart 20149. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
dquart.b  |-  ( ph  ->  B  e.  CC )
dquart.c  |-  ( ph  ->  C  e.  CC )
dquart.x  |-  ( ph  ->  X  e.  CC )
dquart.s  |-  ( ph  ->  S  e.  CC )
dquart.m  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
dquart.m0  |-  ( ph  ->  M  =/=  0 )
dquart.i  |-  ( ph  ->  I  e.  CC )
dquart.i2  |-  ( ph  ->  ( I ^ 2 )  =  ( (
-u ( S ^
2 )  -  ( B  /  2 ) )  +  ( ( C  /  4 )  /  S ) ) )
Assertion
Ref Expression
dquartlem1  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  =  0  <-> 
( X  =  (
-u S  +  I
)  \/  X  =  ( -u S  -  I ) ) ) )

Proof of Theorem dquartlem1
StepHypRef Expression
1 dquart.x . . . . . . 7  |-  ( ph  ->  X  e.  CC )
21sqcld 11243 . . . . . 6  |-  ( ph  ->  ( X ^ 2 )  e.  CC )
3 dquart.m . . . . . . . . 9  |-  ( ph  ->  M  =  ( ( 2  x.  S ) ^ 2 ) )
4 2cn 9816 . . . . . . . . . . 11  |-  2  e.  CC
5 dquart.s . . . . . . . . . . 11  |-  ( ph  ->  S  e.  CC )
6 mulcl 8821 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( 2  x.  S
)  e.  CC )
74, 5, 6sylancr 644 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  S
)  e.  CC )
87sqcld 11243 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  e.  CC )
93, 8eqeltrd 2357 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
10 dquart.b . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
119, 10addcld 8854 . . . . . . 7  |-  ( ph  ->  ( M  +  B
)  e.  CC )
1211halfcld 9956 . . . . . 6  |-  ( ph  ->  ( ( M  +  B )  /  2
)  e.  CC )
132, 12addcld 8854 . . . . 5  |-  ( ph  ->  ( ( X ^
2 )  +  ( ( M  +  B
)  /  2 ) )  e.  CC )
149halfcld 9956 . . . . . . . 8  |-  ( ph  ->  ( M  /  2
)  e.  CC )
1514, 1mulcld 8855 . . . . . . 7  |-  ( ph  ->  ( ( M  / 
2 )  x.  X
)  e.  CC )
16 dquart.c . . . . . . . 8  |-  ( ph  ->  C  e.  CC )
17 4cn 9820 . . . . . . . . 9  |-  4  e.  CC
1817a1i 10 . . . . . . . 8  |-  ( ph  ->  4  e.  CC )
19 4nn 9879 . . . . . . . . . 10  |-  4  e.  NN
2019nnne0i 9780 . . . . . . . . 9  |-  4  =/=  0
2120a1i 10 . . . . . . . 8  |-  ( ph  ->  4  =/=  0 )
2216, 18, 21divcld 9536 . . . . . . 7  |-  ( ph  ->  ( C  /  4
)  e.  CC )
2315, 22subcld 9157 . . . . . 6  |-  ( ph  ->  ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  e.  CC )
24 dquart.m0 . . . . . . . . . 10  |-  ( ph  ->  M  =/=  0 )
253, 24eqnetrrd 2466 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  =/=  0 )
26 sqne0 11170 . . . . . . . . . 10  |-  ( ( 2  x.  S )  e.  CC  ->  (
( ( 2  x.  S ) ^ 2 )  =/=  0  <->  (
2  x.  S )  =/=  0 ) )
277, 26syl 15 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  S ) ^
2 )  =/=  0  <->  ( 2  x.  S )  =/=  0 ) )
2825, 27mpbid 201 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  S
)  =/=  0 )
29 mulne0b 9409 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( ( 2  =/=  0  /\  S  =/=  0 )  <->  ( 2  x.  S )  =/=  0 ) )
304, 5, 29sylancr 644 . . . . . . . 8  |-  ( ph  ->  ( ( 2  =/=  0  /\  S  =/=  0 )  <->  ( 2  x.  S )  =/=  0 ) )
3128, 30mpbird 223 . . . . . . 7  |-  ( ph  ->  ( 2  =/=  0  /\  S  =/=  0
) )
3231simprd 449 . . . . . 6  |-  ( ph  ->  S  =/=  0 )
3323, 5, 32divcld 9536 . . . . 5  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
)  e.  CC )
3413, 33addcld 8854 . . . 4  |-  ( ph  ->  ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2
) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  e.  CC )
354a1i 10 . . . 4  |-  ( ph  ->  2  e.  CC )
36 2ne0 9829 . . . . 5  |-  2  =/=  0
3736a1i 10 . . . 4  |-  ( ph  ->  2  =/=  0 )
38 diveq0 9434 . . . 4  |-  ( ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2
) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  0  <->  (
( ( X ^
2 )  +  ( ( M  +  B
)  /  2 ) )  +  ( ( ( ( M  / 
2 )  x.  X
)  -  ( C  /  4 ) )  /  S ) )  =  0 ) )
3934, 35, 37, 38syl3anc 1182 . . 3  |-  ( ph  ->  ( ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2 ) )  +  ( ( ( ( M  /  2
)  x.  X )  -  ( C  / 
4 ) )  /  S ) )  / 
2 )  =  0  <-> 
( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2
) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  0 ) )
402, 12, 33addassd 8857 . . . . . 6  |-  ( ph  ->  ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2
) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  ( ( X ^ 2 )  +  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) ) ) )
4140oveq1d 5873 . . . . 5  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( ( X ^ 2 )  +  ( ( ( M  +  B
)  /  2 )  +  ( ( ( ( M  /  2
)  x.  X )  -  ( C  / 
4 ) )  /  S ) ) )  /  2 ) )
4212, 33addcld 8854 . . . . . 6  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  e.  CC )
432, 42, 35, 37divdird 9574 . . . . 5  |-  ( ph  ->  ( ( ( X ^ 2 )  +  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) ) )  /  2 )  =  ( ( ( X ^ 2 )  /  2 )  +  ( ( ( ( M  +  B )  /  2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
) ) )
442, 35, 37divrec2d 9540 . . . . . 6  |-  ( ph  ->  ( ( X ^
2 )  /  2
)  =  ( ( 1  /  2 )  x.  ( X ^
2 ) ) )
4515, 22, 5, 32divsubdird 9575 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
)  =  ( ( ( ( M  / 
2 )  x.  X
)  /  S )  -  ( ( C  /  4 )  /  S ) ) )
4614, 1, 5, 32div23d 9573 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M  /  2 )  x.  X )  /  S
)  =  ( ( ( M  /  2
)  /  S )  x.  X ) )
475sqvald 11242 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( S ^ 2 )  =  ( S  x.  S ) )
4847oveq2d 5874 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  x.  ( S ^ 2 ) )  =  ( 2  x.  ( S  x.  S
) ) )
49 sqmul 11167 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  CC  /\  S  e.  CC )  ->  ( ( 2  x.  S ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( S ^
2 ) ) )
504, 5, 49sylancr 644 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( S ^
2 ) ) )
514sqvali 11183 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
5251oveq1i 5868 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2 ^ 2 )  x.  ( S ^
2 ) )  =  ( ( 2  x.  2 )  x.  ( S ^ 2 ) )
5350, 52syl6eq 2331 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( 2  x.  S ) ^ 2 )  =  ( ( 2  x.  2 )  x.  ( S ^
2 ) ) )
545sqcld 11243 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( S ^ 2 )  e.  CC )
5535, 35, 54mulassd 8858 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( 2  x.  2 )  x.  ( S ^ 2 ) )  =  ( 2  x.  ( 2  x.  ( S ^ 2 ) ) ) )
563, 53, 553eqtrd 2319 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  M  =  ( 2  x.  ( 2  x.  ( S ^ 2 ) ) ) )
5756oveq1d 5873 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( M  /  2
)  =  ( ( 2  x.  ( 2  x.  ( S ^
2 ) ) )  /  2 ) )
58 mulcl 8821 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  CC  /\  ( S ^ 2 )  e.  CC )  -> 
( 2  x.  ( S ^ 2 ) )  e.  CC )
594, 54, 58sylancr 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 2  x.  ( S ^ 2 ) )  e.  CC )
6059, 35, 37divcan3d 9541 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2  x.  ( 2  x.  ( S ^ 2 ) ) )  /  2 )  =  ( 2  x.  ( S ^ 2 ) ) )
6157, 60eqtrd 2315 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( M  /  2
)  =  ( 2  x.  ( S ^
2 ) ) )
6235, 5, 5mulassd 8858 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  x.  S )  x.  S
)  =  ( 2  x.  ( S  x.  S ) ) )
6348, 61, 623eqtr4d 2325 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M  /  2
)  =  ( ( 2  x.  S )  x.  S ) )
6463oveq1d 5873 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( M  / 
2 )  /  S
)  =  ( ( ( 2  x.  S
)  x.  S )  /  S ) )
657, 5, 32divcan4d 9542 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2  x.  S )  x.  S )  /  S
)  =  ( 2  x.  S ) )
6664, 65eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( M  / 
2 )  /  S
)  =  ( 2  x.  S ) )
6766oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( M  /  2 )  /  S )  x.  X
)  =  ( ( 2  x.  S )  x.  X ) )
6846, 67eqtrd 2315 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( M  /  2 )  x.  X )  /  S
)  =  ( ( 2  x.  S )  x.  X ) )
6968oveq1d 5873 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  /  S )  -  (
( C  /  4
)  /  S ) )  =  ( ( ( 2  x.  S
)  x.  X )  -  ( ( C  /  4 )  /  S ) ) )
7045, 69eqtrd 2315 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
)  =  ( ( ( 2  x.  S
)  x.  X )  -  ( ( C  /  4 )  /  S ) ) )
7170oveq2d 5874 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  ( ( ( M  +  B )  /  2 )  +  ( ( ( 2  x.  S )  x.  X )  -  (
( C  /  4
)  /  S ) ) ) )
727, 1mulcld 8855 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  S )  x.  X
)  e.  CC )
7322, 5, 32divcld 9536 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  / 
4 )  /  S
)  e.  CC )
7412, 72, 73addsub12d 9180 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( 2  x.  S )  x.  X
)  -  ( ( C  /  4 )  /  S ) ) )  =  ( ( ( 2  x.  S
)  x.  X )  +  ( ( ( M  +  B )  /  2 )  -  ( ( C  / 
4 )  /  S
) ) ) )
7571, 74eqtrd 2315 . . . . . . . 8  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  =  ( ( ( 2  x.  S )  x.  X )  +  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) ) ) )
7675oveq1d 5873 . . . . . . 7  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( ( ( 2  x.  S )  x.  X
)  +  ( ( ( M  +  B
)  /  2 )  -  ( ( C  /  4 )  /  S ) ) )  /  2 ) )
7712, 73subcld 9157 . . . . . . . 8  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  e.  CC )
7872, 77, 35, 37divdird 9574 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 2  x.  S )  x.  X )  +  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) ) )  /  2
)  =  ( ( ( ( 2  x.  S )  x.  X
)  /  2 )  +  ( ( ( ( M  +  B
)  /  2 )  -  ( ( C  /  4 )  /  S ) )  / 
2 ) ) )
7935, 5, 1mulassd 8858 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2  x.  S )  x.  X
)  =  ( 2  x.  ( S  x.  X ) ) )
8079oveq1d 5873 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2  x.  S )  x.  X )  /  2
)  =  ( ( 2  x.  ( S  x.  X ) )  /  2 ) )
815, 1mulcld 8855 . . . . . . . . . 10  |-  ( ph  ->  ( S  x.  X
)  e.  CC )
8281, 35, 37divcan3d 9541 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( S  x.  X
) )  /  2
)  =  ( S  x.  X ) )
8380, 82eqtrd 2315 . . . . . . . 8  |-  ( ph  ->  ( ( ( 2  x.  S )  x.  X )  /  2
)  =  ( S  x.  X ) )
8454negcld 9144 . . . . . . . . . . . 12  |-  ( ph  -> 
-u ( S ^
2 )  e.  CC )
8510halfcld 9956 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  /  2
)  e.  CC )
8684, 85subcld 9157 . . . . . . . . . . 11  |-  ( ph  ->  ( -u ( S ^ 2 )  -  ( B  /  2
) )  e.  CC )
8754, 86, 73subsub4d 9188 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( S ^ 2 )  -  ( -u ( S ^
2 )  -  ( B  /  2 ) ) )  -  ( ( C  /  4 )  /  S ) )  =  ( ( S ^ 2 )  -  ( ( -u ( S ^ 2 )  -  ( B  /  2
) )  +  ( ( C  /  4
)  /  S ) ) ) )
889, 10, 35, 37divdird 9574 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M  +  B )  /  2
)  =  ( ( M  /  2 )  +  ( B  / 
2 ) ) )
89542timesd 9954 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2  x.  ( S ^ 2 ) )  =  ( ( S ^ 2 )  +  ( S ^ 2 ) ) )
9061, 89eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  /  2
)  =  ( ( S ^ 2 )  +  ( S ^
2 ) ) )
9190oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( M  / 
2 )  +  ( B  /  2 ) )  =  ( ( ( S ^ 2 )  +  ( S ^ 2 ) )  +  ( B  / 
2 ) ) )
9288, 91eqtrd 2315 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  +  B )  /  2
)  =  ( ( ( S ^ 2 )  +  ( S ^ 2 ) )  +  ( B  / 
2 ) ) )
9354, 54, 85addassd 8857 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( S ^ 2 )  +  ( S ^ 2 ) )  +  ( B  /  2 ) )  =  ( ( S ^ 2 )  +  ( ( S ^ 2 )  +  ( B  /  2
) ) ) )
9454, 85addcld 8854 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( S ^
2 )  +  ( B  /  2 ) )  e.  CC )
9554, 94subnegd 9164 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S ^
2 )  -  -u (
( S ^ 2 )  +  ( B  /  2 ) ) )  =  ( ( S ^ 2 )  +  ( ( S ^ 2 )  +  ( B  /  2
) ) ) )
9654, 85negdi2d 9171 . . . . . . . . . . . . . 14  |-  ( ph  -> 
-u ( ( S ^ 2 )  +  ( B  /  2
) )  =  (
-u ( S ^
2 )  -  ( B  /  2 ) ) )
9796oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( S ^
2 )  -  -u (
( S ^ 2 )  +  ( B  /  2 ) ) )  =  ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  /  2
) ) ) )
9895, 97eqtr3d 2317 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S ^
2 )  +  ( ( S ^ 2 )  +  ( B  /  2 ) ) )  =  ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  /  2
) ) ) )
9992, 93, 983eqtrd 2319 . . . . . . . . . . 11  |-  ( ph  ->  ( ( M  +  B )  /  2
)  =  ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  /  2
) ) ) )
10099oveq1d 5873 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  =  ( ( ( S ^ 2 )  -  ( -u ( S ^ 2 )  -  ( B  / 
2 ) ) )  -  ( ( C  /  4 )  /  S ) ) )
101 dquart.i2 . . . . . . . . . . 11  |-  ( ph  ->  ( I ^ 2 )  =  ( (
-u ( S ^
2 )  -  ( B  /  2 ) )  +  ( ( C  /  4 )  /  S ) ) )
102101oveq2d 5874 . . . . . . . . . 10  |-  ( ph  ->  ( ( S ^
2 )  -  (
I ^ 2 ) )  =  ( ( S ^ 2 )  -  ( ( -u ( S ^ 2 )  -  ( B  / 
2 ) )  +  ( ( C  / 
4 )  /  S
) ) ) )
10387, 100, 1023eqtr4d 2325 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
104103oveq1d 5873 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 )  -  ( ( C  / 
4 )  /  S
) )  /  2
)  =  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) )
10583, 104oveq12d 5876 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 2  x.  S )  x.  X )  / 
2 )  +  ( ( ( ( M  +  B )  / 
2 )  -  (
( C  /  4
)  /  S ) )  /  2 ) )  =  ( ( S  x.  X )  +  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) ) )
10676, 78, 1053eqtrd 2319 . . . . . 6  |-  ( ph  ->  ( ( ( ( M  +  B )  /  2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( S  x.  X )  +  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) ) )
10744, 106oveq12d 5876 . . . . 5  |-  ( ph  ->  ( ( ( X ^ 2 )  / 
2 )  +  ( ( ( ( M  +  B )  / 
2 )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4 ) )  /  S ) )  /  2 ) )  =  ( ( ( 1  /  2 )  x.  ( X ^
2 ) )  +  ( ( S  x.  X )  +  ( ( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) ) ) )
10841, 43, 1073eqtrd 2319 . . . 4  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  /  2
)  =  ( ( ( 1  /  2
)  x.  ( X ^ 2 ) )  +  ( ( S  x.  X )  +  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2
) ) ) )
109108eqeq1d 2291 . . 3  |-  ( ph  ->  ( ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  /  2 ) )  +  ( ( ( ( M  /  2
)  x.  X )  -  ( C  / 
4 ) )  /  S ) )  / 
2 )  =  0  <-> 
( ( ( 1  /  2 )  x.  ( X ^ 2 ) )  +  ( ( S  x.  X
)  +  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  0 ) )
11039, 109bitr3d 246 . 2  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  =  0  <-> 
( ( ( 1  /  2 )  x.  ( X ^ 2 ) )  +  ( ( S  x.  X
)  +  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  0 ) )
111 ax-1cn 8795 . . . 4  |-  1  e.  CC
112 halfcl 9937 . . . 4  |-  ( 1  e.  CC  ->  (
1  /  2 )  e.  CC )
113111, 112mp1i 11 . . 3  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
114 ax-1ne0 8806 . . . . 5  |-  1  =/=  0
115111, 4, 114, 36divne0i 9508 . . . 4  |-  ( 1  /  2 )  =/=  0
116115a1i 10 . . 3  |-  ( ph  ->  ( 1  /  2
)  =/=  0 )
117 dquart.i . . . . . 6  |-  ( ph  ->  I  e.  CC )
118117sqcld 11243 . . . . 5  |-  ( ph  ->  ( I ^ 2 )  e.  CC )
11954, 118subcld 9157 . . . 4  |-  ( ph  ->  ( ( S ^
2 )  -  (
I ^ 2 ) )  e.  CC )
120119halfcld 9956 . . 3  |-  ( ph  ->  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2
)  e.  CC )
121111a1i 10 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
1224, 36pm3.2i 441 . . . . . . . . . 10  |-  ( 2  e.  CC  /\  2  =/=  0 )
123122a1i 10 . . . . . . . . 9  |-  ( ph  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
124 divmuldiv 9460 . . . . . . . . 9  |-  ( ( ( 1  e.  CC  /\  ( ( S ^
2 )  -  (
I ^ 2 ) )  e.  CC )  /\  ( ( 2  e.  CC  /\  2  =/=  0 )  /\  (
2  e.  CC  /\  2  =/=  0 ) ) )  ->  ( (
1  /  2 )  x.  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) )  =  ( ( 1  x.  ( ( S ^
2 )  -  (
I ^ 2 ) ) )  /  (
2  x.  2 ) ) )
125121, 119, 123, 123, 124syl22anc 1183 . . . . . . . 8  |-  ( ph  ->  ( ( 1  / 
2 )  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) )  =  ( ( 1  x.  ( ( S ^ 2 )  -  ( I ^
2 ) ) )  /  ( 2  x.  2 ) ) )
126119mulid2d 8853 . . . . . . . . 9  |-  ( ph  ->  ( 1  x.  (
( S ^ 2 )  -  ( I ^ 2 ) ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
127 2t2e4 9871 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
128127a1i 10 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  2 )  =  4 )
129126, 128oveq12d 5876 . . . . . . . 8  |-  ( ph  ->  ( ( 1  x.  ( ( S ^
2 )  -  (
I ^ 2 ) ) )  /  (
2  x.  2 ) )  =  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  4 ) )
130125, 129eqtrd 2315 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 )  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) )  =  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  4 ) )
131130oveq2d 5874 . . . . . 6  |-  ( ph  ->  ( 4  x.  (
( 1  /  2
)  x.  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  ( 4  x.  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
4 ) ) )
132119, 18, 21divcan2d 9538 . . . . . 6  |-  ( ph  ->  ( 4  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  4 ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
133131, 132eqtrd 2315 . . . . 5  |-  ( ph  ->  ( 4  x.  (
( 1  /  2
)  x.  ( ( ( S ^ 2 )  -  ( I ^ 2 ) )  /  2 ) ) )  =  ( ( S ^ 2 )  -  ( I ^
2 ) ) )
134133oveq2d 5874 . . . 4  |-  ( ph  ->  ( ( S ^
2 )  -  (
4  x.  ( ( 1  /  2 )  x.  ( ( ( S ^ 2 )  -  ( I ^
2 ) )  / 
2 ) ) ) )  =  ( ( S ^ 2 )  -  ( ( S ^ 2 )  -  ( I ^ 2 ) ) ) )
13554, 118nncand 9162 . . . 4  |-  ( ph  ->  ( ( S ^
2 )  -  (
( S ^ 2 )  -  ( I ^ 2 ) ) )  =  ( I ^ 2 ) )
136134, 135eqtr2d 2316 . . 3  |-  ( ph  ->  ( I ^ 2 )  =  ( ( S ^ 2 )  -  ( 4  x.  ( ( 1  / 
2 )  x.  (
( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) ) ) ) )
137113, 116, 5, 120, 1, 117, 136quad2 20135 . 2  |-  ( ph  ->  ( ( ( ( 1  /  2 )  x.  ( X ^
2 ) )  +  ( ( S  x.  X )  +  ( ( ( S ^
2 )  -  (
I ^ 2 ) )  /  2 ) ) )  =  0  <-> 
( X  =  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  \/  X  =  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) ) ) ) )
1384, 36recidi 9491 . . . . . 6  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
139138oveq2i 5869 . . . . 5  |-  ( (
-u S  +  I
)  /  ( 2  x.  ( 1  / 
2 ) ) )  =  ( ( -u S  +  I )  /  1 )
1405negcld 9144 . . . . . . 7  |-  ( ph  -> 
-u S  e.  CC )
141140, 117addcld 8854 . . . . . 6  |-  ( ph  ->  ( -u S  +  I )  e.  CC )
142141div1d 9528 . . . . 5  |-  ( ph  ->  ( ( -u S  +  I )  /  1
)  =  ( -u S  +  I )
)
143139, 142syl5eq 2327 . . . 4  |-  ( ph  ->  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  =  ( -u S  +  I )
)
144143eqeq2d 2294 . . 3  |-  ( ph  ->  ( X  =  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  <->  X  =  ( -u S  +  I ) ) )
145138oveq2i 5869 . . . . 5  |-  ( (
-u S  -  I
)  /  ( 2  x.  ( 1  / 
2 ) ) )  =  ( ( -u S  -  I )  /  1 )
146140, 117subcld 9157 . . . . . 6  |-  ( ph  ->  ( -u S  -  I )  e.  CC )
147146div1d 9528 . . . . 5  |-  ( ph  ->  ( ( -u S  -  I )  /  1
)  =  ( -u S  -  I )
)
148145, 147syl5eq 2327 . . . 4  |-  ( ph  ->  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) )  =  ( -u S  -  I )
)
149148eqeq2d 2294 . . 3  |-  ( ph  ->  ( X  =  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) )  <->  X  =  ( -u S  -  I ) ) )
150144, 149orbi12d 690 . 2  |-  ( ph  ->  ( ( X  =  ( ( -u S  +  I )  /  (
2  x.  ( 1  /  2 ) ) )  \/  X  =  ( ( -u S  -  I )  /  (
2  x.  ( 1  /  2 ) ) ) )  <->  ( X  =  ( -u S  +  I )  \/  X  =  ( -u S  -  I ) ) ) )
151110, 137, 1503bitrd 270 1  |-  ( ph  ->  ( ( ( ( X ^ 2 )  +  ( ( M  +  B )  / 
2 ) )  +  ( ( ( ( M  /  2 )  x.  X )  -  ( C  /  4
) )  /  S
) )  =  0  <-> 
( X  =  (
-u S  +  I
)  \/  X  =  ( -u S  -  I ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037   -ucneg 9038    / cdiv 9423   2c2 9795   4c4 9797   ^cexp 11104
This theorem is referenced by:  dquart  20149
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-seq 11047  df-exp 11105
  Copyright terms: Public domain W3C validator