Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral1 Unicode version

Theorem dral1 1905
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.)
Hypothesis
Ref Expression
dral1.1
Assertion
Ref Expression
dral1

Proof of Theorem dral1
StepHypRef Expression
1 hbae 1893 . . . 4
2 dral1.1 . . . . 5
32biimpd 198 . . . 4
41, 3alimdh 1550 . . 3
5 ax10o 1892 . . 3
64, 5syld 40 . 2
7 hbae 1893 . . . 4
82biimprd 214 . . . 4
97, 8alimdh 1550 . . 3
10 ax10o 1892 . . . 4
1110aecoms 1887 . . 3
129, 11syld 40 . 2
136, 12impbid 183 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176  wal 1527 This theorem is referenced by:  drex1  1907  drnf1  1909  equveli  1928  a16gALT  1989  sb9i  2034  ralcom2  2704  axpownd  8223  ax12-2  29103  ax12-4  29106 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
 Copyright terms: Public domain W3C validator