MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral1 Unicode version

Theorem dral1 1905
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.)
Hypothesis
Ref Expression
dral1.1  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dral1  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ps ) )

Proof of Theorem dral1
StepHypRef Expression
1 hbae 1893 . . . 4  |-  ( A. x  x  =  y  ->  A. x A. x  x  =  y )
2 dral1.1 . . . . 5  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
32biimpd 198 . . . 4  |-  ( A. x  x  =  y  ->  ( ph  ->  ps ) )
41, 3alimdh 1550 . . 3  |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. x ps )
)
5 ax10o 1892 . . 3  |-  ( A. x  x  =  y  ->  ( A. x ps 
->  A. y ps )
)
64, 5syld 40 . 2  |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ps )
)
7 hbae 1893 . . . 4  |-  ( A. x  x  =  y  ->  A. y A. x  x  =  y )
82biimprd 214 . . . 4  |-  ( A. x  x  =  y  ->  ( ps  ->  ph )
)
97, 8alimdh 1550 . . 3  |-  ( A. x  x  =  y  ->  ( A. y ps 
->  A. y ph )
)
10 ax10o 1892 . . . 4  |-  ( A. y  y  =  x  ->  ( A. y ph  ->  A. x ph )
)
1110aecoms 1887 . . 3  |-  ( A. x  x  =  y  ->  ( A. y ph  ->  A. x ph )
)
129, 11syld 40 . 2  |-  ( A. x  x  =  y  ->  ( A. y ps 
->  A. x ph )
)
136, 12impbid 183 1  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527
This theorem is referenced by:  drex1  1907  drnf1  1909  equveli  1928  a16gALT  1989  sb9i  2034  ralcom2  2704  axpownd  8223  ax12-2  29103  ax12-4  29106
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator