Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drex1 Unicode version

Theorem drex1 1907
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Hypothesis
Ref Expression
dral1.1
Assertion
Ref Expression
drex1

Proof of Theorem drex1
StepHypRef Expression
1 dral1.1 . . . . 5
21notbid 285 . . . 4
32dral1 1905 . . 3
43notbid 285 . 2
5 df-ex 1529 . 2
6 df-ex 1529 . 2
74, 5, 63bitr4g 279 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 176  wal 1527  wex 1528 This theorem is referenced by:  exdistrf  1911  drsb1  1962  eujustALT  2146  copsexg  4252  dfid3  4310  dropab1  27650  dropab2  27651  e2ebind  28329  e2ebindVD  28688  e2ebindALT  28706 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
 Copyright terms: Public domain W3C validator