Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnfc2 Structured version   Unicode version

Theorem drnfc2 2591
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
drnfc1.1
Assertion
Ref Expression
drnfc2

Proof of Theorem drnfc2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5
21eleq2d 2505 . . . 4
32drnf2 2063 . . 3
43dral2 2056 . 2
5 df-nfc 2563 . 2
6 df-nfc 2563 . 2
74, 5, 63bitr4g 281 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550  wnf 1554   wceq 1653   wcel 1726  wnfc 2561 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555  df-cleq 2431  df-clel 2434  df-nfc 2563
 Copyright terms: Public domain W3C validator