MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngmul0or Structured version   Unicode version

Theorem drngmul0or 15848
Description: A product is zero iff one of its factors is zero. (Contributed by NM, 8-Oct-2014.)
Hypotheses
Ref Expression
drngmuleq0.b  |-  B  =  ( Base `  R
)
drngmuleq0.o  |-  .0.  =  ( 0g `  R )
drngmuleq0.t  |-  .x.  =  ( .r `  R )
drngmuleq0.r  |-  ( ph  ->  R  e.  DivRing )
drngmuleq0.x  |-  ( ph  ->  X  e.  B )
drngmuleq0.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
drngmul0or  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  )
) )

Proof of Theorem drngmul0or
StepHypRef Expression
1 df-ne 2600 . . . . 5  |-  ( X  =/=  .0.  <->  -.  X  =  .0.  )
2 oveq2 6081 . . . . . . . 8  |-  ( ( X  .x.  Y )  =  .0.  ->  (
( ( invr `  R
) `  X )  .x.  ( X  .x.  Y
) )  =  ( ( ( invr `  R
) `  X )  .x.  .0.  ) )
32ad2antlr 708 . . . . . . 7  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  (
( ( invr `  R
) `  X )  .x.  ( X  .x.  Y
) )  =  ( ( ( invr `  R
) `  X )  .x.  .0.  ) )
4 drngmuleq0.r . . . . . . . . . . . 12  |-  ( ph  ->  R  e.  DivRing )
54adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  X  =/=  .0.  )  ->  R  e.  DivRing )
6 drngmuleq0.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  B )
76adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  X  =/=  .0.  )  ->  X  e.  B )
8 simpr 448 . . . . . . . . . . 11  |-  ( (
ph  /\  X  =/=  .0.  )  ->  X  =/= 
.0.  )
9 drngmuleq0.b . . . . . . . . . . . 12  |-  B  =  ( Base `  R
)
10 drngmuleq0.o . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  R )
11 drngmuleq0.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  R )
12 eqid 2435 . . . . . . . . . . . 12  |-  ( 1r
`  R )  =  ( 1r `  R
)
13 eqid 2435 . . . . . . . . . . . 12  |-  ( invr `  R )  =  (
invr `  R )
149, 10, 11, 12, 13drnginvrl 15846 . . . . . . . . . . 11  |-  ( ( R  e.  DivRing  /\  X  e.  B  /\  X  =/= 
.0.  )  ->  (
( ( invr `  R
) `  X )  .x.  X )  =  ( 1r `  R ) )
155, 7, 8, 14syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( ( ( invr `  R
) `  X )  .x.  X )  =  ( 1r `  R ) )
1615oveq1d 6088 . . . . . . . . 9  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( ( ( ( invr `  R
) `  X )  .x.  X )  .x.  Y
)  =  ( ( 1r `  R ) 
.x.  Y ) )
17 drngrng 15834 . . . . . . . . . . . 12  |-  ( R  e.  DivRing  ->  R  e.  Ring )
184, 17syl 16 . . . . . . . . . . 11  |-  ( ph  ->  R  e.  Ring )
1918adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  X  =/=  .0.  )  ->  R  e. 
Ring )
209, 10, 13drnginvrcl 15844 . . . . . . . . . . 11  |-  ( ( R  e.  DivRing  /\  X  e.  B  /\  X  =/= 
.0.  )  ->  (
( invr `  R ) `  X )  e.  B
)
215, 7, 8, 20syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( (
invr `  R ) `  X )  e.  B
)
22 drngmuleq0.y . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  B )
2322adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  X  =/=  .0.  )  ->  Y  e.  B )
249, 11rngass 15672 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( ( invr `  R
) `  X )  e.  B  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( ( (
invr `  R ) `  X )  .x.  X
)  .x.  Y )  =  ( ( (
invr `  R ) `  X )  .x.  ( X  .x.  Y ) ) )
2519, 21, 7, 23, 24syl13anc 1186 . . . . . . . . 9  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( ( ( ( invr `  R
) `  X )  .x.  X )  .x.  Y
)  =  ( ( ( invr `  R
) `  X )  .x.  ( X  .x.  Y
) ) )
269, 11, 12rnglidm 15679 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
2718, 22, 26syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1r `  R )  .x.  Y
)  =  Y )
2827adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( ( 1r `  R ) 
.x.  Y )  =  Y )
2916, 25, 283eqtr3d 2475 . . . . . . . 8  |-  ( (
ph  /\  X  =/=  .0.  )  ->  ( ( ( invr `  R
) `  X )  .x.  ( X  .x.  Y
) )  =  Y )
3029adantlr 696 . . . . . . 7  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  (
( ( invr `  R
) `  X )  .x.  ( X  .x.  Y
) )  =  Y )
3118adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( X  .x.  Y )  =  .0.  )  ->  R  e.  Ring )
3231adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  R  e.  Ring )
3321adantlr 696 . . . . . . . 8  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  (
( invr `  R ) `  X )  e.  B
)
349, 11, 10rngrz 15693 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( invr `  R ) `  X )  e.  B
)  ->  ( (
( invr `  R ) `  X )  .x.  .0.  )  =  .0.  )
3532, 33, 34syl2anc 643 . . . . . . 7  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  (
( ( invr `  R
) `  X )  .x.  .0.  )  =  .0.  )
363, 30, 353eqtr3d 2475 . . . . . 6  |-  ( ( ( ph  /\  ( X  .x.  Y )  =  .0.  )  /\  X  =/=  .0.  )  ->  Y  =  .0.  )
3736ex 424 . . . . 5  |-  ( (
ph  /\  ( X  .x.  Y )  =  .0.  )  ->  ( X  =/=  .0.  ->  Y  =  .0.  ) )
381, 37syl5bir 210 . . . 4  |-  ( (
ph  /\  ( X  .x.  Y )  =  .0.  )  ->  ( -.  X  =  .0.  ->  Y  =  .0.  ) )
3938orrd 368 . . 3  |-  ( (
ph  /\  ( X  .x.  Y )  =  .0.  )  ->  ( X  =  .0.  \/  Y  =  .0.  ) )
4039ex 424 . 2  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0. 
->  ( X  =  .0. 
\/  Y  =  .0.  ) ) )
419, 11, 10rnglz 15692 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (  .0.  .x.  Y )  =  .0.  )
4218, 22, 41syl2anc 643 . . . 4  |-  ( ph  ->  (  .0.  .x.  Y
)  =  .0.  )
43 oveq1 6080 . . . . 5  |-  ( X  =  .0.  ->  ( X  .x.  Y )  =  (  .0.  .x.  Y
) )
4443eqeq1d 2443 . . . 4  |-  ( X  =  .0.  ->  (
( X  .x.  Y
)  =  .0.  <->  (  .0.  .x. 
Y )  =  .0.  ) )
4542, 44syl5ibrcom 214 . . 3  |-  ( ph  ->  ( X  =  .0. 
->  ( X  .x.  Y
)  =  .0.  )
)
469, 11, 10rngrz 15693 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
4718, 6, 46syl2anc 643 . . . 4  |-  ( ph  ->  ( X  .x.  .0.  )  =  .0.  )
48 oveq2 6081 . . . . 5  |-  ( Y  =  .0.  ->  ( X  .x.  Y )  =  ( X  .x.  .0.  ) )
4948eqeq1d 2443 . . . 4  |-  ( Y  =  .0.  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  .x.  .0.  )  =  .0.  ) )
5047, 49syl5ibrcom 214 . . 3  |-  ( ph  ->  ( Y  =  .0. 
->  ( X  .x.  Y
)  =  .0.  )
)
5145, 50jaod 370 . 2  |-  ( ph  ->  ( ( X  =  .0.  \/  Y  =  .0.  )  ->  ( X  .x.  Y )  =  .0.  ) )
5240, 51impbid 184 1  |-  ( ph  ->  ( ( X  .x.  Y )  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   ` cfv 5446  (class class class)co 6073   Basecbs 13461   .rcmulr 13522   0gc0g 13715   Ringcrg 15652   1rcur 15654   invrcinvr 15768   DivRingcdr 15827
This theorem is referenced by:  drngmulne0  15849  drngmuleq0  15850
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-mgp 15641  df-rng 15655  df-ur 15657  df-oppr 15720  df-dvdsr 15738  df-unit 15739  df-invr 15769  df-drng 15829
  Copyright terms: Public domain W3C validator