MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscopn Unicode version

Theorem dscopn 18148
Description: The discrete metric generates the discrete topology. In particular, the discrete topology is metrizable. (Contributed by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
dscmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
Assertion
Ref Expression
dscopn  |-  ( X  e.  V  ->  ( MetOpen
`  D )  =  ~P X )
Distinct variable group:    x, y, X
Allowed substitution hints:    D( x, y)    V( x, y)

Proof of Theorem dscopn
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dscmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |->  if ( x  =  y ,  0 ,  1 ) )
21dscmet 18147 . . . . . 6  |-  ( X  e.  V  ->  D  e.  ( Met `  X
) )
3 metxmet 17951 . . . . . 6  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
42, 3syl 15 . . . . 5  |-  ( X  e.  V  ->  D  e.  ( * Met `  X
) )
5 eqid 2316 . . . . . 6  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
65elmopn 18040 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  (
u  e.  ( MetOpen `  D )  <->  ( u  C_  X  /\  A. v  e.  u  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) ) ) )
74, 6syl 15 . . . 4  |-  ( X  e.  V  ->  (
u  e.  ( MetOpen `  D )  <->  ( u  C_  X  /\  A. v  e.  u  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) ) ) )
8 simpll 730 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  X  e.  V )
9 ssel2 3209 . . . . . . . . . 10  |-  ( ( u  C_  X  /\  v  e.  u )  ->  v  e.  X )
109adantll 694 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  v  e.  X )
118, 10jca 518 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  ( X  e.  V  /\  v  e.  X ) )
12 elsn 3689 . . . . . . . . . . . 12  |-  ( w  e.  { v }  <-> 
w  =  v )
13 eleq1a 2385 . . . . . . . . . . . . . . 15  |-  ( v  e.  X  ->  (
w  =  v  ->  w  e.  X )
)
14 simpl 443 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  X  /\  ( v D w )  <  1 )  ->  w  e.  X
)
1514a1i 10 . . . . . . . . . . . . . . 15  |-  ( v  e.  X  ->  (
( w  e.  X  /\  ( v D w )  <  1 )  ->  w  e.  X
) )
16 eqeq12 2328 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  =  v  /\  y  =  w )  ->  ( x  =  y  <-> 
v  =  w ) )
1716ifbid 3617 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  =  v  /\  y  =  w )  ->  if ( x  =  y ,  0 ,  1 )  =  if ( v  =  w ,  0 ,  1 ) )
18 0re 8883 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  RR
19 1re 8882 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  RR
2018, 19keepel 3656 . . . . . . . . . . . . . . . . . . . . 21  |-  if ( v  =  w ,  0 ,  1 )  e.  RR
2120elexi 2831 . . . . . . . . . . . . . . . . . . . 20  |-  if ( v  =  w ,  0 ,  1 )  e.  _V
2217, 1, 21ovmpt2a 6020 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( v D w )  =  if ( v  =  w ,  0 ,  1 ) )
2322breq1d 4070 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( ( v D w )  <  1  <->  if ( v  =  w ,  0 ,  1 )  <  1 ) )
2419ltnri 8974 . . . . . . . . . . . . . . . . . . . . . 22  |-  -.  1  <  1
25 iffalse 3606 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  v  =  w  ->  if ( v  =  w ,  0 ,  1 )  =  1 )
2625breq1d 4070 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  v  =  w  -> 
( if ( v  =  w ,  0 ,  1 )  <  1  <->  1  <  1
) )
2724, 26mtbiri 294 . . . . . . . . . . . . . . . . . . . . 21  |-  ( -.  v  =  w  ->  -.  if ( v  =  w ,  0 ,  1 )  <  1
)
2827con4i 122 . . . . . . . . . . . . . . . . . . . 20  |-  ( if ( v  =  w ,  0 ,  1 )  <  1  -> 
v  =  w )
29 iftrue 3605 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  w  ->  if ( v  =  w ,  0 ,  1 )  =  0 )
30 0lt1 9341 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <  1
3129, 30syl6eqbr 4097 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  w  ->  if ( v  =  w ,  0 ,  1 )  <  1 )
3228, 31impbii 180 . . . . . . . . . . . . . . . . . . 19  |-  ( if ( v  =  w ,  0 ,  1 )  <  1  <->  v  =  w )
33 equcom 1671 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  w  <->  w  =  v )
3432, 33bitri 240 . . . . . . . . . . . . . . . . . 18  |-  ( if ( v  =  w ,  0 ,  1 )  <  1  <->  w  =  v )
3523, 34syl6rbb 253 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( w  =  v  <-> 
( v D w )  <  1 ) )
36 simpr 447 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  e.  X  /\  w  e.  X )  ->  w  e.  X )
3736biantrurd 494 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( ( v D w )  <  1  <->  ( w  e.  X  /\  ( v D w )  <  1 ) ) )
3835, 37bitrd 244 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  X  /\  w  e.  X )  ->  ( w  =  v  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) )
3938ex 423 . . . . . . . . . . . . . . 15  |-  ( v  e.  X  ->  (
w  e.  X  -> 
( w  =  v  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) ) )
4013, 15, 39pm5.21ndd 343 . . . . . . . . . . . . . 14  |-  ( v  e.  X  ->  (
w  =  v  <->  ( w  e.  X  /\  (
v D w )  <  1 ) ) )
4140adantl 452 . . . . . . . . . . . . 13  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  =  v  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) )
42 1rp 10405 . . . . . . . . . . . . . . . 16  |-  1  e.  RR+
43 rpxr 10408 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
4442, 43ax-mp 8 . . . . . . . . . . . . . . 15  |-  1  e.  RR*
45 elbl 18001 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  X )  /\  v  e.  X  /\  1  e.  RR* )  ->  ( w  e.  ( v ( ball `  D
) 1 )  <->  ( w  e.  X  /\  (
v D w )  <  1 ) ) )
4644, 45mp3an3 1266 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  v  e.  X
)  ->  ( w  e.  ( v ( ball `  D ) 1 )  <-> 
( w  e.  X  /\  ( v D w )  <  1 ) ) )
474, 46sylan 457 . . . . . . . . . . . . 13  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  e.  ( v ( ball `  D
) 1 )  <->  ( w  e.  X  /\  (
v D w )  <  1 ) ) )
4841, 47bitr4d 247 . . . . . . . . . . . 12  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  =  v  <-> 
w  e.  ( v ( ball `  D
) 1 ) ) )
4912, 48syl5bb 248 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( w  e.  {
v }  <->  w  e.  ( v ( ball `  D ) 1 ) ) )
5049eqrdv 2314 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  v  e.  X )  ->  { v }  =  ( v ( ball `  D ) 1 ) )
51 blelrn 18019 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  v  e.  X  /\  1  e.  RR* )  ->  ( v ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )
5244, 51mp3an3 1266 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  v  e.  X
)  ->  ( v
( ball `  D )
1 )  e.  ran  ( ball `  D )
)
534, 52sylan 457 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  v  e.  X )  ->  ( v ( ball `  D ) 1 )  e.  ran  ( ball `  D ) )
5450, 53eqeltrd 2390 . . . . . . . . 9  |-  ( ( X  e.  V  /\  v  e.  X )  ->  { v }  e.  ran  ( ball `  D
) )
55 snssi 3796 . . . . . . . . . 10  |-  ( v  e.  u  ->  { v }  C_  u )
56 vex 2825 . . . . . . . . . . 11  |-  v  e. 
_V
5756snid 3701 . . . . . . . . . 10  |-  v  e. 
{ v }
5855, 57jctil 523 . . . . . . . . 9  |-  ( v  e.  u  ->  (
v  e.  { v }  /\  { v }  C_  u )
)
59 eleq2 2377 . . . . . . . . . . 11  |-  ( w  =  { v }  ->  ( v  e.  w  <->  v  e.  {
v } ) )
60 sseq1 3233 . . . . . . . . . . 11  |-  ( w  =  { v }  ->  ( w  C_  u 
<->  { v }  C_  u ) )
6159, 60anbi12d 691 . . . . . . . . . 10  |-  ( w  =  { v }  ->  ( ( v  e.  w  /\  w  C_  u )  <->  ( v  e.  { v }  /\  { v }  C_  u
) ) )
6261rspcev 2918 . . . . . . . . 9  |-  ( ( { v }  e.  ran  ( ball `  D
)  /\  ( v  e.  { v }  /\  { v }  C_  u
) )  ->  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) )
6354, 58, 62syl2an 463 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  v  e.  X
)  /\  v  e.  u )  ->  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) )
6411, 63sylancom 648 . . . . . . 7  |-  ( ( ( X  e.  V  /\  u  C_  X )  /\  v  e.  u
)  ->  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) )
6564ralrimiva 2660 . . . . . 6  |-  ( ( X  e.  V  /\  u  C_  X )  ->  A. v  e.  u  E. w  e.  ran  ( ball `  D )
( v  e.  w  /\  w  C_  u ) )
6665ex 423 . . . . 5  |-  ( X  e.  V  ->  (
u  C_  X  ->  A. v  e.  u  E. w  e.  ran  ( ball `  D ) ( v  e.  w  /\  w  C_  u ) ) )
6766pm4.71d 615 . . . 4  |-  ( X  e.  V  ->  (
u  C_  X  <->  ( u  C_  X  /\  A. v  e.  u  E. w  e.  ran  ( ball `  D
) ( v  e.  w  /\  w  C_  u ) ) ) )
687, 67bitr4d 247 . . 3  |-  ( X  e.  V  ->  (
u  e.  ( MetOpen `  D )  <->  u  C_  X
) )
69 vex 2825 . . . 4  |-  u  e. 
_V
7069elpw 3665 . . 3  |-  ( u  e.  ~P X  <->  u  C_  X
)
7168, 70syl6bbr 254 . 2  |-  ( X  e.  V  ->  (
u  e.  ( MetOpen `  D )  <->  u  e.  ~P X ) )
7271eqrdv 2314 1  |-  ( X  e.  V  ->  ( MetOpen
`  D )  =  ~P X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1633    e. wcel 1701   A.wral 2577   E.wrex 2578    C_ wss 3186   ifcif 3599   ~Pcpw 3659   {csn 3674   class class class wbr 4060   ran crn 4727   ` cfv 5292  (class class class)co 5900    e. cmpt2 5902   RRcr 8781   0cc0 8782   1c1 8783   RR*cxr 8911    < clt 8912   RR+crp 10401   * Metcxmt 16418   Metcme 16419   ballcbl 16420   MetOpencmopn 16423
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-map 6817  df-en 6907  df-dom 6908  df-sdom 6909  df-sup 7239  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-n0 10013  df-z 10072  df-uz 10278  df-q 10364  df-rp 10402  df-xneg 10499  df-xadd 10500  df-xmul 10501  df-topgen 13393  df-xmet 16425  df-met 16426  df-bl 16427  df-mopn 16428  df-bases 16694
  Copyright terms: Public domain W3C validator