Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dsmm0cl Structured version   Unicode version

Theorem dsmm0cl 27174
Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p  |-  P  =  ( S X_s R )
dsmmcl.h  |-  H  =  ( Base `  ( S  (+)m  R ) )
dsmmcl.i  |-  ( ph  ->  I  e.  W )
dsmmcl.s  |-  ( ph  ->  S  e.  V )
dsmmcl.r  |-  ( ph  ->  R : I --> Mnd )
dsmm0cl.z  |-  .0.  =  ( 0g `  P )
Assertion
Ref Expression
dsmm0cl  |-  ( ph  ->  .0.  e.  H )

Proof of Theorem dsmm0cl
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . . 4  |-  P  =  ( S X_s R )
2 dsmmcl.i . . . 4  |-  ( ph  ->  I  e.  W )
3 dsmmcl.s . . . 4  |-  ( ph  ->  S  e.  V )
4 dsmmcl.r . . . 4  |-  ( ph  ->  R : I --> Mnd )
51, 2, 3, 4prdsmndd 14720 . . 3  |-  ( ph  ->  P  e.  Mnd )
6 eqid 2435 . . . 4  |-  ( Base `  P )  =  (
Base `  P )
7 dsmm0cl.z . . . 4  |-  .0.  =  ( 0g `  P )
86, 7mndidcl 14706 . . 3  |-  ( P  e.  Mnd  ->  .0.  e.  ( Base `  P
) )
95, 8syl 16 . 2  |-  ( ph  ->  .0.  e.  ( Base `  P ) )
101, 2, 3, 4prds0g 14721 . . . . . . . . . 10  |-  ( ph  ->  ( 0g  o.  R
)  =  ( 0g
`  P ) )
1110, 7syl6eqr 2485 . . . . . . . . 9  |-  ( ph  ->  ( 0g  o.  R
)  =  .0.  )
1211adantr 452 . . . . . . . 8  |-  ( (
ph  /\  a  e.  I )  ->  ( 0g  o.  R )  =  .0.  )
1312fveq1d 5722 . . . . . . 7  |-  ( (
ph  /\  a  e.  I )  ->  (
( 0g  o.  R
) `  a )  =  (  .0.  `  a
) )
14 ffn 5583 . . . . . . . . 9  |-  ( R : I --> Mnd  ->  R  Fn  I )
154, 14syl 16 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
16 fvco2 5790 . . . . . . . 8  |-  ( ( R  Fn  I  /\  a  e.  I )  ->  ( ( 0g  o.  R ) `  a
)  =  ( 0g
`  ( R `  a ) ) )
1715, 16sylan 458 . . . . . . 7  |-  ( (
ph  /\  a  e.  I )  ->  (
( 0g  o.  R
) `  a )  =  ( 0g `  ( R `  a ) ) )
1813, 17eqtr3d 2469 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  (  .0.  `  a )  =  ( 0g `  ( R `  a )
) )
19 nne 2602 . . . . . 6  |-  ( -.  (  .0.  `  a
)  =/=  ( 0g
`  ( R `  a ) )  <->  (  .0.  `  a )  =  ( 0g `  ( R `
 a ) ) )
2018, 19sylibr 204 . . . . 5  |-  ( (
ph  /\  a  e.  I )  ->  -.  (  .0.  `  a )  =/=  ( 0g `  ( R `  a )
) )
2120ralrimiva 2781 . . . 4  |-  ( ph  ->  A. a  e.  I  -.  (  .0.  `  a
)  =/=  ( 0g
`  ( R `  a ) ) )
22 rabeq0 3641 . . . 4  |-  ( { a  e.  I  |  (  .0.  `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  =  (/)  <->  A. a  e.  I  -.  (  .0.  `  a
)  =/=  ( 0g
`  ( R `  a ) ) )
2321, 22sylibr 204 . . 3  |-  ( ph  ->  { a  e.  I  |  (  .0.  `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  =  (/) )
24 0fin 7328 . . 3  |-  (/)  e.  Fin
2523, 24syl6eqel 2523 . 2  |-  ( ph  ->  { a  e.  I  |  (  .0.  `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin )
26 eqid 2435 . . 3  |-  ( S 
(+)m  R )  =  ( S  (+)m  R )
27 dsmmcl.h . . 3  |-  H  =  ( Base `  ( S  (+)m  R ) )
281, 26, 6, 27, 2, 15dsmmelbas 27173 . 2  |-  ( ph  ->  (  .0.  e.  H  <->  (  .0.  e.  ( Base `  P )  /\  {
a  e.  I  |  (  .0.  `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin ) ) )
299, 25, 28mpbir2and 889 1  |-  ( ph  ->  .0.  e.  H )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   {crab 2701   (/)c0 3620    o. ccom 4874    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   Fincfn 7101   Basecbs 13461   X_scprds 13661   0gc0g 13715   Mndcmnd 14676    (+)m cdsmm 27165
This theorem is referenced by:  dsmmsubg  27177
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-fz 11036  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-hom 13545  df-cco 13546  df-prds 13663  df-0g 13719  df-mnd 14682  df-dsmm 27166
  Copyright terms: Public domain W3C validator