Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dsmmacl Unicode version

Theorem dsmmacl 26869
Description: The finite hull is closed under addition. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p  |-  P  =  ( S X_s R )
dsmmcl.h  |-  H  =  ( Base `  ( S  (+)m  R ) )
dsmmcl.i  |-  ( ph  ->  I  e.  W )
dsmmcl.s  |-  ( ph  ->  S  e.  V )
dsmmcl.r  |-  ( ph  ->  R : I --> Mnd )
dsmmacl.j  |-  ( ph  ->  J  e.  H )
dsmmacl.k  |-  ( ph  ->  K  e.  H )
dsmmacl.a  |-  .+  =  ( +g  `  P )
Assertion
Ref Expression
dsmmacl  |-  ( ph  ->  ( J  .+  K
)  e.  H )

Proof of Theorem dsmmacl
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . 3  |-  P  =  ( S X_s R )
2 eqid 2380 . . 3  |-  ( Base `  P )  =  (
Base `  P )
3 dsmmacl.a . . 3  |-  .+  =  ( +g  `  P )
4 dsmmcl.s . . 3  |-  ( ph  ->  S  e.  V )
5 dsmmcl.i . . 3  |-  ( ph  ->  I  e.  W )
6 dsmmcl.r . . 3  |-  ( ph  ->  R : I --> Mnd )
7 dsmmacl.j . . . . 5  |-  ( ph  ->  J  e.  H )
8 eqid 2380 . . . . . 6  |-  ( S 
(+)m  R )  =  ( S  (+)m  R )
9 dsmmcl.h . . . . . 6  |-  H  =  ( Base `  ( S  (+)m  R ) )
10 ffn 5524 . . . . . . 7  |-  ( R : I --> Mnd  ->  R  Fn  I )
116, 10syl 16 . . . . . 6  |-  ( ph  ->  R  Fn  I )
121, 8, 2, 9, 5, 11dsmmelbas 26867 . . . . 5  |-  ( ph  ->  ( J  e.  H  <->  ( J  e.  ( Base `  P )  /\  {
a  e.  I  |  ( J `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin ) ) )
137, 12mpbid 202 . . . 4  |-  ( ph  ->  ( J  e.  (
Base `  P )  /\  { a  e.  I  |  ( J `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin ) )
1413simpld 446 . . 3  |-  ( ph  ->  J  e.  ( Base `  P ) )
15 dsmmacl.k . . . . 5  |-  ( ph  ->  K  e.  H )
161, 8, 2, 9, 5, 11dsmmelbas 26867 . . . . 5  |-  ( ph  ->  ( K  e.  H  <->  ( K  e.  ( Base `  P )  /\  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin ) ) )
1715, 16mpbid 202 . . . 4  |-  ( ph  ->  ( K  e.  (
Base `  P )  /\  { a  e.  I  |  ( K `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin ) )
1817simpld 446 . . 3  |-  ( ph  ->  K  e.  ( Base `  P ) )
191, 2, 3, 4, 5, 6, 14, 18prdsplusgcl 14646 . 2  |-  ( ph  ->  ( J  .+  K
)  e.  ( Base `  P ) )
204adantr 452 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  S  e.  V )
215adantr 452 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  I  e.  W )
2211adantr 452 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  R  Fn  I )
2314adantr 452 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  J  e.  ( Base `  P
) )
2418adantr 452 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  K  e.  ( Base `  P
) )
25 simpr 448 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  a  e.  I )
261, 2, 20, 21, 22, 23, 24, 3, 25prdsplusgfval 13616 . . . . 5  |-  ( (
ph  /\  a  e.  I )  ->  (
( J  .+  K
) `  a )  =  ( ( J `
 a ) ( +g  `  ( R `
 a ) ) ( K `  a
) ) )
2726neeq1d 2556 . . . 4  |-  ( (
ph  /\  a  e.  I )  ->  (
( ( J  .+  K ) `  a
)  =/=  ( 0g
`  ( R `  a ) )  <->  ( ( J `  a )
( +g  `  ( R `
 a ) ) ( K `  a
) )  =/=  ( 0g `  ( R `  a ) ) ) )
2827rabbidva 2883 . . 3  |-  ( ph  ->  { a  e.  I  |  ( ( J 
.+  K ) `  a )  =/=  ( 0g `  ( R `  a ) ) }  =  { a  e.  I  |  ( ( J `  a ) ( +g  `  ( R `  a )
) ( K `  a ) )  =/=  ( 0g `  ( R `  a )
) } )
2913simprd 450 . . . . 5  |-  ( ph  ->  { a  e.  I  |  ( J `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin )
3017simprd 450 . . . . 5  |-  ( ph  ->  { a  e.  I  |  ( K `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin )
31 unfi 7303 . . . . 5  |-  ( ( { a  e.  I  |  ( J `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin  /\  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin )  -> 
( { a  e.  I  |  ( J `
 a )  =/=  ( 0g `  ( R `  a )
) }  u.  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) } )  e.  Fin )
3229, 30, 31syl2anc 643 . . . 4  |-  ( ph  ->  ( { a  e.  I  |  ( J `
 a )  =/=  ( 0g `  ( R `  a )
) }  u.  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) } )  e.  Fin )
33 neorian 2630 . . . . . . . . . 10  |-  ( ( ( J `  a
)  =/=  ( 0g
`  ( R `  a ) )  \/  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) )  <->  -.  ( ( J `  a )  =  ( 0g `  ( R `
 a ) )  /\  ( K `  a )  =  ( 0g `  ( R `
 a ) ) ) )
3433bicomi 194 . . . . . . . . 9  |-  ( -.  ( ( J `  a )  =  ( 0g `  ( R `
 a ) )  /\  ( K `  a )  =  ( 0g `  ( R `
 a ) ) )  <->  ( ( J `
 a )  =/=  ( 0g `  ( R `  a )
)  \/  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) ) )
3534con1bii 322 . . . . . . . 8  |-  ( -.  ( ( J `  a )  =/=  ( 0g `  ( R `  a ) )  \/  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) )  <-> 
( ( J `  a )  =  ( 0g `  ( R `
 a ) )  /\  ( K `  a )  =  ( 0g `  ( R `
 a ) ) ) )
366ffvelrnda 5802 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  I )  ->  ( R `  a )  e.  Mnd )
37 eqid 2380 . . . . . . . . . . . 12  |-  ( Base `  ( R `  a
) )  =  (
Base `  ( R `  a ) )
38 eqid 2380 . . . . . . . . . . . 12  |-  ( 0g
`  ( R `  a ) )  =  ( 0g `  ( R `  a )
)
3937, 38mndidcl 14634 . . . . . . . . . . 11  |-  ( ( R `  a )  e.  Mnd  ->  ( 0g `  ( R `  a ) )  e.  ( Base `  ( R `  a )
) )
4036, 39syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  I )  ->  ( 0g `  ( R `  a ) )  e.  ( Base `  ( R `  a )
) )
41 eqid 2380 . . . . . . . . . . 11  |-  ( +g  `  ( R `  a
) )  =  ( +g  `  ( R `
 a ) )
4237, 41, 38mndlid 14636 . . . . . . . . . 10  |-  ( ( ( R `  a
)  e.  Mnd  /\  ( 0g `  ( R `
 a ) )  e.  ( Base `  ( R `  a )
) )  ->  (
( 0g `  ( R `  a )
) ( +g  `  ( R `  a )
) ( 0g `  ( R `  a ) ) )  =  ( 0g `  ( R `
 a ) ) )
4336, 40, 42syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  I )  ->  (
( 0g `  ( R `  a )
) ( +g  `  ( R `  a )
) ( 0g `  ( R `  a ) ) )  =  ( 0g `  ( R `
 a ) ) )
44 oveq12 6022 . . . . . . . . . 10  |-  ( ( ( J `  a
)  =  ( 0g
`  ( R `  a ) )  /\  ( K `  a )  =  ( 0g `  ( R `  a ) ) )  ->  (
( J `  a
) ( +g  `  ( R `  a )
) ( K `  a ) )  =  ( ( 0g `  ( R `  a ) ) ( +g  `  ( R `  a )
) ( 0g `  ( R `  a ) ) ) )
4544eqeq1d 2388 . . . . . . . . 9  |-  ( ( ( J `  a
)  =  ( 0g
`  ( R `  a ) )  /\  ( K `  a )  =  ( 0g `  ( R `  a ) ) )  ->  (
( ( J `  a ) ( +g  `  ( R `  a
) ) ( K `
 a ) )  =  ( 0g `  ( R `  a ) )  <->  ( ( 0g
`  ( R `  a ) ) ( +g  `  ( R `
 a ) ) ( 0g `  ( R `  a )
) )  =  ( 0g `  ( R `
 a ) ) ) )
4643, 45syl5ibrcom 214 . . . . . . . 8  |-  ( (
ph  /\  a  e.  I )  ->  (
( ( J `  a )  =  ( 0g `  ( R `
 a ) )  /\  ( K `  a )  =  ( 0g `  ( R `
 a ) ) )  ->  ( ( J `  a )
( +g  `  ( R `
 a ) ) ( K `  a
) )  =  ( 0g `  ( R `
 a ) ) ) )
4735, 46syl5bi 209 . . . . . . 7  |-  ( (
ph  /\  a  e.  I )  ->  ( -.  ( ( J `  a )  =/=  ( 0g `  ( R `  a ) )  \/  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) )  ->  ( ( J `
 a ) ( +g  `  ( R `
 a ) ) ( K `  a
) )  =  ( 0g `  ( R `
 a ) ) ) )
4847necon1ad 2610 . . . . . 6  |-  ( (
ph  /\  a  e.  I )  ->  (
( ( J `  a ) ( +g  `  ( R `  a
) ) ( K `
 a ) )  =/=  ( 0g `  ( R `  a ) )  ->  ( ( J `  a )  =/=  ( 0g `  ( R `  a )
)  \/  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) ) ) )
4948ss2rabdv 3360 . . . . 5  |-  ( ph  ->  { a  e.  I  |  ( ( J `
 a ) ( +g  `  ( R `
 a ) ) ( K `  a
) )  =/=  ( 0g `  ( R `  a ) ) } 
C_  { a  e.  I  |  ( ( J `  a )  =/=  ( 0g `  ( R `  a ) )  \/  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) ) } )
50 unrab 3548 . . . . 5  |-  ( { a  e.  I  |  ( J `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  u.  { a  e.  I  |  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) } )  =  { a  e.  I  |  ( ( J `
 a )  =/=  ( 0g `  ( R `  a )
)  \/  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) ) }
5149, 50syl6sseqr 3331 . . . 4  |-  ( ph  ->  { a  e.  I  |  ( ( J `
 a ) ( +g  `  ( R `
 a ) ) ( K `  a
) )  =/=  ( 0g `  ( R `  a ) ) } 
C_  ( { a  e.  I  |  ( J `  a )  =/=  ( 0g `  ( R `  a ) ) }  u.  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) } ) )
52 ssfi 7258 . . . 4  |-  ( ( ( { a  e.  I  |  ( J `
 a )  =/=  ( 0g `  ( R `  a )
) }  u.  {
a  e.  I  |  ( K `  a
)  =/=  ( 0g
`  ( R `  a ) ) } )  e.  Fin  /\  { a  e.  I  |  ( ( J `  a ) ( +g  `  ( R `  a
) ) ( K `
 a ) )  =/=  ( 0g `  ( R `  a ) ) }  C_  ( { a  e.  I  |  ( J `  a )  =/=  ( 0g `  ( R `  a ) ) }  u.  { a  e.  I  |  ( K `
 a )  =/=  ( 0g `  ( R `  a )
) } ) )  ->  { a  e.  I  |  ( ( J `  a ) ( +g  `  ( R `  a )
) ( K `  a ) )  =/=  ( 0g `  ( R `  a )
) }  e.  Fin )
5332, 51, 52syl2anc 643 . . 3  |-  ( ph  ->  { a  e.  I  |  ( ( J `
 a ) ( +g  `  ( R `
 a ) ) ( K `  a
) )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin )
5428, 53eqeltrd 2454 . 2  |-  ( ph  ->  { a  e.  I  |  ( ( J 
.+  K ) `  a )  =/=  ( 0g `  ( R `  a ) ) }  e.  Fin )
551, 8, 2, 9, 5, 11dsmmelbas 26867 . 2  |-  ( ph  ->  ( ( J  .+  K )  e.  H  <->  ( ( J  .+  K
)  e.  ( Base `  P )  /\  {
a  e.  I  |  ( ( J  .+  K ) `  a
)  =/=  ( 0g
`  ( R `  a ) ) }  e.  Fin ) ) )
5619, 54, 55mpbir2and 889 1  |-  ( ph  ->  ( J  .+  K
)  e.  H )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2543   {crab 2646    u. cun 3254    C_ wss 3256    Fn wfn 5382   -->wf 5383   ` cfv 5387  (class class class)co 6013   Fincfn 7038   Basecbs 13389   +g cplusg 13449   X_scprds 13589   0gc0g 13643   Mndcmnd 14604    (+)m cdsmm 26859
This theorem is referenced by:  dsmmsubg  26871
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-ixp 6993  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-sup 7374  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-fz 10969  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-sca 13465  df-vsca 13466  df-tset 13468  df-ple 13469  df-ds 13471  df-hom 13473  df-cco 13474  df-prds 13591  df-0g 13647  df-mnd 14610  df-dsmm 26860
  Copyright terms: Public domain W3C validator