Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dsmmval Unicode version

Theorem dsmmval 27200
Description: Value of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015.)
Hypothesis
Ref Expression
dsmmval.b  |-  B  =  { f  e.  (
Base `  ( S X_s R ) )  |  {
x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin }
Assertion
Ref Expression
dsmmval  |-  ( R  e.  V  ->  ( S  (+)m  R )  =  ( ( S X_s R )s  B ) )
Distinct variable groups:    S, f, x    R, f, x
Allowed substitution hints:    B( x, f)    V( x, f)

Proof of Theorem dsmmval
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2796 . 2  |-  ( R  e.  V  ->  R  e.  _V )
2 oveq12 5867 . . . . 5  |-  ( ( s  =  S  /\  r  =  R )  ->  ( s X_s r )  =  ( S X_s R ) )
3 eqid 2283 . . . . . . . . 9  |-  ( s
X_s r )  =  ( s X_s r )
4 vex 2791 . . . . . . . . . 10  |-  s  e. 
_V
54a1i 10 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  s  e.  _V )
6 vex 2791 . . . . . . . . . 10  |-  r  e. 
_V
76a1i 10 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  r  e.  _V )
8 eqid 2283 . . . . . . . . 9  |-  ( Base `  ( s X_s r ) )  =  ( Base `  (
s X_s r ) )
9 eqidd 2284 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  dom  r  =  dom  r )
103, 5, 7, 8, 9prdsbas 13357 . . . . . . . 8  |-  ( ( s  =  S  /\  r  =  R )  ->  ( Base `  (
s X_s r ) )  = 
X_ x  e.  dom  r ( Base `  (
r `  x )
) )
112fveq2d 5529 . . . . . . . 8  |-  ( ( s  =  S  /\  r  =  R )  ->  ( Base `  (
s X_s r ) )  =  ( Base `  ( S X_s R ) ) )
1210, 11eqtr3d 2317 . . . . . . 7  |-  ( ( s  =  S  /\  r  =  R )  -> 
X_ x  e.  dom  r ( Base `  (
r `  x )
)  =  ( Base `  ( S X_s R ) ) )
13 simpr 447 . . . . . . . . . 10  |-  ( ( s  =  S  /\  r  =  R )  ->  r  =  R )
1413dmeqd 4881 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  dom  r  =  dom  R )
1513fveq1d 5527 . . . . . . . . . . 11  |-  ( ( s  =  S  /\  r  =  R )  ->  ( r `  x
)  =  ( R `
 x ) )
1615fveq2d 5529 . . . . . . . . . 10  |-  ( ( s  =  S  /\  r  =  R )  ->  ( 0g `  (
r `  x )
)  =  ( 0g
`  ( R `  x ) ) )
1716neeq2d 2460 . . . . . . . . 9  |-  ( ( s  =  S  /\  r  =  R )  ->  ( ( f `  x )  =/=  ( 0g `  ( r `  x ) )  <->  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) ) )
1814, 17rabeqbidv 2783 . . . . . . . 8  |-  ( ( s  =  S  /\  r  =  R )  ->  { x  e.  dom  r  |  ( f `  x )  =/=  ( 0g `  ( r `  x ) ) }  =  { x  e. 
dom  R  |  (
f `  x )  =/=  ( 0g `  ( R `  x )
) } )
1918eleq1d 2349 . . . . . . 7  |-  ( ( s  =  S  /\  r  =  R )  ->  ( { x  e. 
dom  r  |  ( f `  x )  =/=  ( 0g `  ( r `  x
) ) }  e.  Fin 
<->  { x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin ) )
2012, 19rabeqbidv 2783 . . . . . 6  |-  ( ( s  =  S  /\  r  =  R )  ->  { f  e.  X_ x  e.  dom  r (
Base `  ( r `  x ) )  |  { x  e.  dom  r  |  ( f `  x )  =/=  ( 0g `  ( r `  x ) ) }  e.  Fin }  =  { f  e.  (
Base `  ( S X_s R ) )  |  {
x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin } )
21 dsmmval.b . . . . . 6  |-  B  =  { f  e.  (
Base `  ( S X_s R ) )  |  {
x  e.  dom  R  |  ( f `  x )  =/=  ( 0g `  ( R `  x ) ) }  e.  Fin }
2220, 21syl6eqr 2333 . . . . 5  |-  ( ( s  =  S  /\  r  =  R )  ->  { f  e.  X_ x  e.  dom  r (
Base `  ( r `  x ) )  |  { x  e.  dom  r  |  ( f `  x )  =/=  ( 0g `  ( r `  x ) ) }  e.  Fin }  =  B )
232, 22oveq12d 5876 . . . 4  |-  ( ( s  =  S  /\  r  =  R )  ->  ( ( s X_s r
)s 
{ f  e.  X_ x  e.  dom  r (
Base `  ( r `  x ) )  |  { x  e.  dom  r  |  ( f `  x )  =/=  ( 0g `  ( r `  x ) ) }  e.  Fin } )  =  ( ( S
X_s
R )s  B ) )
24 df-dsmm 27198 . . . 4  |-  (+)m  =  ( s  e.  _V , 
r  e.  _V  |->  ( ( s X_s r )s  { f  e.  X_ x  e.  dom  r (
Base `  ( r `  x ) )  |  { x  e.  dom  r  |  ( f `  x )  =/=  ( 0g `  ( r `  x ) ) }  e.  Fin } ) )
25 ovex 5883 . . . 4  |-  ( ( S X_s R )s  B )  e.  _V
2623, 24, 25ovmpt2a 5978 . . 3  |-  ( ( S  e.  _V  /\  R  e.  _V )  ->  ( S  (+)m  R )  =  ( ( S
X_s
R )s  B ) )
27 reldmdsmm 27199 . . . . . . 7  |-  Rel  dom  (+)m
2827ovprc1 5886 . . . . . 6  |-  ( -.  S  e.  _V  ->  ( S  (+)m  R )  =  (/) )
29 ress0 13202 . . . . . 6  |-  ( (/)s  B )  =  (/)
3028, 29syl6eqr 2333 . . . . 5  |-  ( -.  S  e.  _V  ->  ( S  (+)m  R )  =  (
(/)s  B ) )
31 reldmprds 13349 . . . . . . 7  |-  Rel  dom  X_s
3231ovprc1 5886 . . . . . 6  |-  ( -.  S  e.  _V  ->  ( S X_s R )  =  (/) )
3332oveq1d 5873 . . . . 5  |-  ( -.  S  e.  _V  ->  ( ( S X_s R )s  B )  =  (
(/)s  B ) )
3430, 33eqtr4d 2318 . . . 4  |-  ( -.  S  e.  _V  ->  ( S  (+)m  R )  =  ( ( S X_s R )s  B ) )
3534adantr 451 . . 3  |-  ( ( -.  S  e.  _V  /\  R  e.  _V )  ->  ( S  (+)m  R )  =  ( ( S
X_s
R )s  B ) )
3626, 35pm2.61ian 765 . 2  |-  ( R  e.  _V  ->  ( S  (+)m  R )  =  ( ( S X_s R )s  B ) )
371, 36syl 15 1  |-  ( R  e.  V  ->  ( S  (+)m  R )  =  ( ( S X_s R )s  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547   _Vcvv 2788   (/)c0 3455   dom cdm 4689   ` cfv 5255  (class class class)co 5858   X_cixp 6817   Fincfn 6863   Basecbs 13148   ↾s cress 13149   X_scprds 13346   0gc0g 13400    (+)m cdsmm 27197
This theorem is referenced by:  dsmmbase  27201  dsmmval2  27202
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-dsmm 27198
  Copyright terms: Public domain W3C validator