MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtrucor Structured version   Unicode version

Theorem dtrucor 4390
Description: Corollary of dtru 4383. This example illustrates the danger of blindly trusting the standard Deduction Theorem without accounting for free variables: the theorem form of this deduction is not valid, as shown by dtrucor2 4391. (Contributed by NM, 27-Jun-2002.)
Hypothesis
Ref Expression
dtrucor.1  |-  x  =  y
Assertion
Ref Expression
dtrucor  |-  x  =/=  y
Distinct variable group:    x, y

Proof of Theorem dtrucor
StepHypRef Expression
1 dtru 4383 . . 3  |-  -.  A. x  x  =  y
21pm2.21i 125 . 2  |-  ( A. x  x  =  y  ->  x  =/=  y )
3 dtrucor.1 . 2  |-  x  =  y
42, 3mpg 1557 1  |-  x  =/=  y
Colors of variables: wff set class
Syntax hints:   A.wal 1549    =/= wne 2599
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-nul 4331  ax-pow 4370
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554
  Copyright terms: Public domain W3C validator