Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dva1dim Unicode version

Theorem dva1dim 31174
Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 
F whose trace is  P rather than  P itself;  F exists by cdlemf 30752. 
E is the division ring base by erngdv 31182, and  s `  F is the scalar product by dvavsca 31206. 
F must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.)
Hypotheses
Ref Expression
dva1dim.l  |-  .<_  =  ( le `  K )
dva1dim.h  |-  H  =  ( LHyp `  K
)
dva1dim.t  |-  T  =  ( ( LTrn `  K
) `  W )
dva1dim.r  |-  R  =  ( ( trL `  K
) `  W )
dva1dim.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
dva1dim  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  e.  T  |  ( R `  g )  .<_  ( R `
 F ) } )
Distinct variable groups:    .<_ , s    E, s    g, s, F    g, H, s    g, K, s    R, s    T, g, s   
g, W, s
Allowed substitution hints:    R( g)    E( g)   
.<_ ( g)

Proof of Theorem dva1dim
StepHypRef Expression
1 dva1dim.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
2 dva1dim.t . . . . . . . . . 10  |-  T  =  ( ( LTrn `  K
) `  W )
3 dva1dim.e . . . . . . . . . 10  |-  E  =  ( ( TEndo `  K
) `  W )
41, 2, 3tendocl 30956 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( s `  F )  e.  T
)
5 dva1dim.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
6 dva1dim.r . . . . . . . . . 10  |-  R  =  ( ( trL `  K
) `  W )
75, 1, 2, 6, 3tendotp 30950 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( R `  ( s `  F
) )  .<_  ( R `
 F ) )
84, 7jca 518 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  s  e.  E  /\  F  e.  T
)  ->  ( (
s `  F )  e.  T  /\  ( R `  ( s `  F ) )  .<_  ( R `  F ) ) )
983expb 1152 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( s  e.  E  /\  F  e.  T ) )  -> 
( ( s `  F )  e.  T  /\  ( R `  (
s `  F )
)  .<_  ( R `  F ) ) )
109anass1rs 782 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
( s `  F
)  e.  T  /\  ( R `  ( s `
 F ) ) 
.<_  ( R `  F
) ) )
11 eleq1 2343 . . . . . . 7  |-  ( g  =  ( s `  F )  ->  (
g  e.  T  <->  ( s `  F )  e.  T
) )
12 fveq2 5525 . . . . . . . 8  |-  ( g  =  ( s `  F )  ->  ( R `  g )  =  ( R `  ( s `  F
) ) )
1312breq1d 4033 . . . . . . 7  |-  ( g  =  ( s `  F )  ->  (
( R `  g
)  .<_  ( R `  F )  <->  ( R `  ( s `  F
) )  .<_  ( R `
 F ) ) )
1411, 13anbi12d 691 . . . . . 6  |-  ( g  =  ( s `  F )  ->  (
( g  e.  T  /\  ( R `  g
)  .<_  ( R `  F ) )  <->  ( (
s `  F )  e.  T  /\  ( R `  ( s `  F ) )  .<_  ( R `  F ) ) ) )
1510, 14syl5ibrcom 213 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  s  e.  E )  ->  (
g  =  ( s `
 F )  -> 
( g  e.  T  /\  ( R `  g
)  .<_  ( R `  F ) ) ) )
1615rexlimdva 2667 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  g  =  ( s `  F )  ->  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) ) )
17 simpll 730 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
18 simplr 731 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  ->  F  e.  T )
19 simprl 732 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  -> 
g  e.  T )
20 simprr 733 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  -> 
( R `  g
)  .<_  ( R `  F ) )
215, 1, 2, 6, 3tendoex 31164 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  g  e.  T )  /\  ( R `  g )  .<_  ( R `  F
) )  ->  E. s  e.  E  ( s `  F )  =  g )
2217, 18, 19, 20, 21syl121anc 1187 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  ->  E. s  e.  E  ( s `  F
)  =  g )
23 eqcom 2285 . . . . . . 7  |-  ( ( s `  F )  =  g  <->  g  =  ( s `  F
) )
2423rexbii 2568 . . . . . 6  |-  ( E. s  e.  E  ( s `  F )  =  g  <->  E. s  e.  E  g  =  ( s `  F
) )
2522, 24sylib 188 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) )  ->  E. s  e.  E  g  =  ( s `  F ) )
2625ex 423 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( (
g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) )  ->  E. s  e.  E  g  =  ( s `  F
) ) )
2716, 26impbid 183 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( E. s  e.  E  g  =  ( s `  F )  <->  ( g  e.  T  /\  ( R `  g )  .<_  ( R `  F
) ) ) )
2827abbidv 2397 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  |  ( g  e.  T  /\  ( R `  g ) 
.<_  ( R `  F
) ) } )
29 df-rab 2552 . 2  |-  { g  e.  T  |  ( R `  g ) 
.<_  ( R `  F
) }  =  {
g  |  ( g  e.  T  /\  ( R `  g )  .<_  ( R `  F
) ) }
3028, 29syl6eqr 2333 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  { g  |  E. s  e.  E  g  =  ( s `  F ) }  =  { g  e.  T  |  ( R `  g )  .<_  ( R `
 F ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544   {crab 2547   class class class wbr 4023   ` cfv 5255   lecple 13215   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347   TEndoctendo 30941
This theorem is referenced by:  dvhb1dimN  31175  dia1dim  31251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944
  Copyright terms: Public domain W3C validator