Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvaabl Unicode version

Theorem dvaabl 31836
Description: The constructed partial vector space A for a lattice  K is an abelian group. (Contributed by NM, 11-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvalvec.h  |-  H  =  ( LHyp `  K
)
dvalvec.v  |-  U  =  ( ( DVecA `  K
) `  W )
Assertion
Ref Expression
dvaabl  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Abel )

Proof of Theorem dvaabl
Dummy variables  f 
s  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvalvec.h . . 3  |-  H  =  ( LHyp `  K
)
2 eqid 2296 . . 3  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
3 eqid 2296 . . 3  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
4 eqid 2296 . . 3  |-  ( (
EDRing `  K ) `  W )  =  ( ( EDRing `  K ) `  W )
5 dvalvec.v . . 3  |-  U  =  ( ( DVecA `  K
) `  W )
61, 2, 3, 4, 5dvaset 31816 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  =  ( {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  W ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( LTrn `  K ) `  W )  |->  ( s `
 f ) )
>. } ) )
7 eqid 2296 . . . . 5  |-  ( (
TGrp `  K ) `  W )  =  ( ( TGrp `  K
) `  W )
81, 2, 7tgrpset 31556 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( TGrp `  K
) `  W )  =  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. } )
91, 7tgrpabl 31562 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( TGrp `  K
) `  W )  e.  Abel )
108, 9eqeltrrd 2371 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. }  e.  Abel )
11 fvex 5555 . . . . 5  |-  ( (
LTrn `  K ) `  W )  e.  _V
12 eqid 2296 . . . . . . 7  |-  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. }  =  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. }
1312grpbase 13264 . . . . . 6  |-  ( ( ( LTrn `  K
) `  W )  e.  _V  ->  ( ( LTrn `  K ) `  W )  =  (
Base `  { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. } ) )
14 eqid 2296 . . . . . . 7  |-  ( {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  W ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( LTrn `  K ) `  W )  |->  ( s `
 f ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  W ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( LTrn `  K ) `  W )  |->  ( s `
 f ) )
>. } )
1514lmodbase 13289 . . . . . 6  |-  ( ( ( LTrn `  K
) `  W )  e.  _V  ->  ( ( LTrn `  K ) `  W )  =  (
Base `  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  W ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( LTrn `  K ) `  W )  |->  ( s `
 f ) )
>. } ) ) )
1613, 15eqtr3d 2330 . . . . 5  |-  ( ( ( LTrn `  K
) `  W )  e.  _V  ->  ( Base `  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. } )  =  (
Base `  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  W ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( LTrn `  K ) `  W )  |->  ( s `
 f ) )
>. } ) ) )
1711, 16ax-mp 8 . . . 4  |-  ( Base `  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. } )  =  (
Base `  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  W ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( LTrn `  K ) `  W )  |->  ( s `
 f ) )
>. } ) )
1811, 11mpt2ex 6214 . . . . 5  |-  ( f  e.  ( ( LTrn `  K ) `  W
) ,  g  e.  ( ( LTrn `  K
) `  W )  |->  ( f  o.  g
) )  e.  _V
1912grpplusg 13265 . . . . . 6  |-  ( ( f  e.  ( (
LTrn `  K ) `  W ) ,  g  e.  ( ( LTrn `  K ) `  W
)  |->  ( f  o.  g ) )  e. 
_V  ->  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )  =  ( +g  `  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. } ) )
2014lmodplusg 13290 . . . . . 6  |-  ( ( f  e.  ( (
LTrn `  K ) `  W ) ,  g  e.  ( ( LTrn `  K ) `  W
)  |->  ( f  o.  g ) )  e. 
_V  ->  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )  =  ( +g  `  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  W ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( LTrn `  K ) `  W )  |->  ( s `
 f ) )
>. } ) ) )
2119, 20eqtr3d 2330 . . . . 5  |-  ( ( f  e.  ( (
LTrn `  K ) `  W ) ,  g  e.  ( ( LTrn `  K ) `  W
)  |->  ( f  o.  g ) )  e. 
_V  ->  ( +g  `  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. } )  =  ( +g  `  ( {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  W ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( LTrn `  K ) `  W )  |->  ( s `
 f ) )
>. } ) ) )
2218, 21ax-mp 8 . . . 4  |-  ( +g  `  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. } )  =  ( +g  `  ( {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  W ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( LTrn `  K ) `  W )  |->  ( s `
 f ) )
>. } ) )
2317, 22ablprop 15116 . . 3  |-  ( {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. }  e.  Abel  <->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  W ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( LTrn `  K ) `  W )  |->  ( s `
 f ) )
>. } )  e.  Abel )
2410, 23sylib 188 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  W ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  W ) ,  g  e.  (
( LTrn `  K ) `  W )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  W ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  W ) ,  f  e.  (
( LTrn `  K ) `  W )  |->  ( s `
 f ) )
>. } )  e.  Abel )
256, 24eqeltrd 2370 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  Abel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163   {csn 3653   {cpr 3654   {ctp 3655   <.cop 3656    o. ccom 4709   ` cfv 5271    e. cmpt2 5876   ndxcnx 13161   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   .scvsca 13228   Abelcabel 15106   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   TGrpctgrp 31553   TEndoctendo 31563   EDRingcedring 31564   DVecAcdveca 31813
This theorem is referenced by:  dvalveclem  31837
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-sca 13240  df-vsca 13241  df-0g 13420  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-mnd 14383  df-grp 14505  df-cmn 15107  df-abl 15108  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-tgrp 31554  df-dveca 31814
  Copyright terms: Public domain W3C validator