Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvaset Unicode version

Theorem dvaset 31263
Description: The constructed partial vector space A for a lattice  K. (Contributed by NM, 8-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
dvaset.h  |-  H  =  ( LHyp `  K
)
dvaset.t  |-  T  =  ( ( LTrn `  K
) `  W )
dvaset.e  |-  E  =  ( ( TEndo `  K
) `  W )
dvaset.d  |-  D  =  ( ( EDRing `  K
) `  W )
dvaset.u  |-  U  =  ( ( DVecA `  K
) `  W )
Assertion
Ref Expression
dvaset  |-  ( ( K  e.  X  /\  W  e.  H )  ->  U  =  ( {
<. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
Distinct variable groups:    f, g,
s, K    f, W, g, s
Allowed substitution hints:    D( f, g, s)    T( f, g, s)    U( f, g, s)    E( f, g, s)    H( f, g, s)    X( f, g, s)

Proof of Theorem dvaset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvaset.u . 2  |-  U  =  ( ( DVecA `  K
) `  W )
2 dvaset.h . . . . 5  |-  H  =  ( LHyp `  K
)
32dvafset 31262 . . . 4  |-  ( K  e.  X  ->  ( DVecA `  K )  =  ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) ) )
43fveq1d 5610 . . 3  |-  ( K  e.  X  ->  (
( DVecA `  K ) `  W )  =  ( ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) ) `  W ) )
5 fveq2 5608 . . . . . . . 8  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  ( ( LTrn `  K
) `  W )
)
6 dvaset.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
75, 6syl6eqr 2408 . . . . . . 7  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  T )
87opeq2d 3884 . . . . . 6  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >.  =  <. ( Base `  ndx ) ,  T >. )
9 eqidd 2359 . . . . . . . 8  |-  ( w  =  W  ->  (
f  o.  g )  =  ( f  o.  g ) )
107, 7, 9mpt2eq123dv 5997 . . . . . . 7  |-  ( w  =  W  ->  (
f  e.  ( (
LTrn `  K ) `  w ) ,  g  e.  ( ( LTrn `  K ) `  w
)  |->  ( f  o.  g ) )  =  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) )
1110opeq2d 3884 . . . . . 6  |-  ( w  =  W  ->  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>.  =  <. ( +g  ` 
ndx ) ,  ( f  e.  T , 
g  e.  T  |->  ( f  o.  g ) ) >. )
12 fveq2 5608 . . . . . . . 8  |-  ( w  =  W  ->  (
( EDRing `  K ) `  w )  =  ( ( EDRing `  K ) `  W ) )
13 dvaset.d . . . . . . . 8  |-  D  =  ( ( EDRing `  K
) `  W )
1412, 13syl6eqr 2408 . . . . . . 7  |-  ( w  =  W  ->  (
( EDRing `  K ) `  w )  =  D )
1514opeq2d 3884 . . . . . 6  |-  ( w  =  W  ->  <. (Scalar ` 
ndx ) ,  ( ( EDRing `  K ) `  w ) >.  =  <. (Scalar `  ndx ) ,  D >. )
168, 11, 15tpeq123d 3797 . . . . 5  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  =  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. } )
17 fveq2 5608 . . . . . . . . 9  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  ( ( TEndo `  K ) `  W ) )
18 dvaset.e . . . . . . . . 9  |-  E  =  ( ( TEndo `  K
) `  W )
1917, 18syl6eqr 2408 . . . . . . . 8  |-  ( w  =  W  ->  (
( TEndo `  K ) `  w )  =  E )
20 eqidd 2359 . . . . . . . 8  |-  ( w  =  W  ->  (
s `  f )  =  ( s `  f ) )
2119, 7, 20mpt2eq123dv 5997 . . . . . . 7  |-  ( w  =  W  ->  (
s  e.  ( (
TEndo `  K ) `  w ) ,  f  e.  ( ( LTrn `  K ) `  w
)  |->  ( s `  f ) )  =  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) )
2221opeq2d 3884 . . . . . 6  |-  ( w  =  W  ->  <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w ) ,  f  e.  ( ( LTrn `  K ) `  w
)  |->  ( s `  f ) ) >.  =  <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `
 f ) )
>. )
2322sneqd 3729 . . . . 5  |-  ( w  =  W  ->  { <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. }  =  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f ) ) >. } )
2416, 23uneq12d 3406 . . . 4  |-  ( w  =  W  ->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } )  =  ( { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
25 eqid 2358 . . . 4  |-  ( w  e.  H  |->  ( {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) )  =  ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) )
26 tpex 4601 . . . . 5  |-  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  e.  _V
27 snex 4297 . . . . 5  |-  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f ) ) >. }  e.  _V
2826, 27unex 4600 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } )  e.  _V
2924, 25, 28fvmpt 5685 . . 3  |-  ( W  e.  H  ->  (
( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. ,  <. (Scalar `  ndx ) ,  ( (
EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( LTrn `  K ) `  w )  |->  ( s `
 f ) )
>. } ) ) `  W )  =  ( { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
304, 29sylan9eq 2410 . 2  |-  ( ( K  e.  X  /\  W  e.  H )  ->  ( ( DVecA `  K
) `  W )  =  ( { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f ) ) >. } ) )
311, 30syl5eq 2402 1  |-  ( ( K  e.  X  /\  W  e.  H )  ->  U  =  ( {
<. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. ,  <. (Scalar `  ndx ) ,  D >. }  u.  { <. ( .s `  ndx ) ,  ( s  e.  E ,  f  e.  T  |->  ( s `  f
) ) >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710    u. cun 3226   {csn 3716   {ctp 3718   <.cop 3719    e. cmpt 4158    o. ccom 4775   ` cfv 5337    e. cmpt2 5947   ndxcnx 13242   Basecbs 13245   +g cplusg 13305  Scalarcsca 13308   .scvsca 13309   LHypclh 30242   LTrncltrn 30359   TEndoctendo 31010   EDRingcedring 31011   DVecAcdveca 31260
This theorem is referenced by:  dvasca  31264  dvavbase  31271  dvafvadd  31272  dvafvsca  31274  dvaabl  31283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-oprab 5949  df-mpt2 5950  df-dveca 31261
  Copyright terms: Public domain W3C validator