MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcobr Unicode version

Theorem dvcobr 19295
Description: The chain rule for derivatives at a point. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvco.f  |-  ( ph  ->  F : X --> CC )
dvco.x  |-  ( ph  ->  X  C_  S )
dvco.g  |-  ( ph  ->  G : Y --> X )
dvco.y  |-  ( ph  ->  Y  C_  T )
dvcobr.s  |-  ( ph  ->  S  C_  CC )
dvcobr.t  |-  ( ph  ->  T  C_  CC )
dvco.k  |-  ( ph  ->  K  e.  V )
dvco.l  |-  ( ph  ->  L  e.  V )
dvco.bf  |-  ( ph  ->  ( G `  C
) ( S  _D  F ) K )
dvco.bg  |-  ( ph  ->  C ( T  _D  G ) L )
dvco.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
dvcobr  |-  ( ph  ->  C ( T  _D  ( F  o.  G
) ) ( K  x.  L ) )

Proof of Theorem dvcobr
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvco.bg . . . 4  |-  ( ph  ->  C ( T  _D  G ) L )
2 eqid 2283 . . . . 5  |-  ( Jt  T )  =  ( Jt  T )
3 dvco.j . . . . 5  |-  J  =  ( TopOpen ` fld )
4 eqid 2283 . . . . 5  |-  ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )
5 dvcobr.t . . . . 5  |-  ( ph  ->  T  C_  CC )
6 dvco.g . . . . . 6  |-  ( ph  ->  G : Y --> X )
7 dvco.x . . . . . . 7  |-  ( ph  ->  X  C_  S )
8 dvcobr.s . . . . . . 7  |-  ( ph  ->  S  C_  CC )
97, 8sstrd 3189 . . . . . 6  |-  ( ph  ->  X  C_  CC )
10 fss 5397 . . . . . 6  |-  ( ( G : Y --> X  /\  X  C_  CC )  ->  G : Y --> CC )
116, 9, 10syl2anc 642 . . . . 5  |-  ( ph  ->  G : Y --> CC )
12 dvco.y . . . . 5  |-  ( ph  ->  Y  C_  T )
132, 3, 4, 5, 11, 12eldv 19248 . . . 4  |-  ( ph  ->  ( C ( T  _D  G ) L  <-> 
( C  e.  ( ( int `  ( Jt  T ) ) `  Y )  /\  L  e.  ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) ) ) )
141, 13mpbid 201 . . 3  |-  ( ph  ->  ( C  e.  ( ( int `  ( Jt  T ) ) `  Y )  /\  L  e.  ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) ) )
1514simpld 445 . 2  |-  ( ph  ->  C  e.  ( ( int `  ( Jt  T ) ) `  Y
) )
16 dvco.bf . . . . . . 7  |-  ( ph  ->  ( G `  C
) ( S  _D  F ) K )
17 dvco.f . . . . . . . 8  |-  ( ph  ->  F : X --> CC )
188, 17, 7dvcl 19249 . . . . . . 7  |-  ( (
ph  /\  ( G `  C ) ( S  _D  F ) K )  ->  K  e.  CC )
1916, 18mpdan 649 . . . . . 6  |-  ( ph  ->  K  e.  CC )
2019ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  ->  K  e.  CC )
2117adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  F : X --> CC )
22 eldifi 3298 . . . . . . . . . 10  |-  ( z  e.  ( Y  \  { C } )  -> 
z  e.  Y )
23 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( G : Y --> X  /\  z  e.  Y )  ->  ( G `  z
)  e.  X )
246, 22, 23syl2an 463 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( G `  z
)  e.  X )
25 ffvelrn 5663 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  ( G `  z )  e.  X )  -> 
( F `  ( G `  z )
)  e.  CC )
2621, 24, 25syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( F `  ( G `  z )
)  e.  CC )
2726adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( F `  ( G `  z ) )  e.  CC )
286adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  G : Y --> X )
295, 11, 12dvbss 19251 . . . . . . . . . . . 12  |-  ( ph  ->  dom  ( T  _D  G )  C_  Y
)
30 reldv 19220 . . . . . . . . . . . . 13  |-  Rel  ( T  _D  G )
31 releldm 4911 . . . . . . . . . . . . 13  |-  ( ( Rel  ( T  _D  G )  /\  C
( T  _D  G
) L )  ->  C  e.  dom  ( T  _D  G ) )
3230, 1, 31sylancr 644 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  dom  ( T  _D  G ) )
3329, 32sseldd 3181 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  Y )
3433adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  C  e.  Y )
35 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( G : Y --> X  /\  C  e.  Y )  ->  ( G `  C
)  e.  X )
3628, 34, 35syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( G `  C
)  e.  X )
37 ffvelrn 5663 . . . . . . . . 9  |-  ( ( F : X --> CC  /\  ( G `  C )  e.  X )  -> 
( F `  ( G `  C )
)  e.  CC )
3821, 36, 37syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( F `  ( G `  C )
)  e.  CC )
3938adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( F `  ( G `  C ) )  e.  CC )
4027, 39subcld 9157 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  e.  CC )
4111ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  G : Y --> CC )
4222ad2antlr 707 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  z  e.  Y
)
43 ffvelrn 5663 . . . . . . . 8  |-  ( ( G : Y --> CC  /\  z  e.  Y )  ->  ( G `  z
)  e.  CC )
4441, 42, 43syl2anc 642 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( G `  z )  e.  CC )
4533ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  C  e.  Y
)
46 ffvelrn 5663 . . . . . . . 8  |-  ( ( G : Y --> CC  /\  C  e.  Y )  ->  ( G `  C
)  e.  CC )
4741, 45, 46syl2anc 642 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( G `  C )  e.  CC )
4844, 47subcld 9157 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( G `
 z )  -  ( G `  C ) )  e.  CC )
49 simpr 447 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  -.  ( G `  z )  =  ( G `  C ) )
50 subeq0 9073 . . . . . . . . 9  |-  ( ( ( G `  z
)  e.  CC  /\  ( G `  C )  e.  CC )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  =  0  <->  ( G `  z )  =  ( G `  C ) ) )
5144, 47, 50syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( G `  z )  -  ( G `  C ) )  =  0  <->  ( G `  z )  =  ( G `  C ) ) )
5251necon3abid 2479 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( G `  z )  -  ( G `  C ) )  =/=  0  <->  -.  ( G `  z )  =  ( G `  C ) ) )
5349, 52mpbird 223 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( G `
 z )  -  ( G `  C ) )  =/=  0 )
5440, 48, 53divcld 9536 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) )  e.  CC )
5520, 54ifclda 3592 . . . 4  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  e.  CC )
569adantr 451 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  X  C_  CC )
5756, 24sseldd 3181 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( G `  z
)  e.  CC )
5856, 36sseldd 3181 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( G `  C
)  e.  CC )
5957, 58subcld 9157 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( G `  z )  -  ( G `  C )
)  e.  CC )
6012, 5sstrd 3189 . . . . . . . 8  |-  ( ph  ->  Y  C_  CC )
6160adantr 451 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  Y  C_  CC )
6222adantl 452 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
z  e.  Y )
6361, 62sseldd 3181 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
z  e.  CC )
6461, 34sseldd 3181 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  ->  C  e.  CC )
6563, 64subcld 9157 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( z  -  C
)  e.  CC )
66 eldifsni 3750 . . . . . . 7  |-  ( z  e.  ( Y  \  { C } )  -> 
z  =/=  C )
6766adantl 452 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
z  =/=  C )
68 subeq0 9073 . . . . . . . 8  |-  ( ( z  e.  CC  /\  C  e.  CC )  ->  ( ( z  -  C )  =  0  <-> 
z  =  C ) )
6963, 64, 68syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( z  -  C )  =  0  <-> 
z  =  C ) )
7069necon3bid 2481 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( z  -  C )  =/=  0  <->  z  =/=  C ) )
7167, 70mpbird 223 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( z  -  C
)  =/=  0 )
7259, 65, 71divcld 9536 . . . 4  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  e.  CC )
73 ssid 3197 . . . . 5  |-  CC  C_  CC
7473a1i 10 . . . 4  |-  ( ph  ->  CC  C_  CC )
753cnfldtopon 18292 . . . . . . 7  |-  J  e.  (TopOn `  CC )
76 txtopon 17286 . . . . . . 7  |-  ( ( J  e.  (TopOn `  CC )  /\  J  e.  (TopOn `  CC )
)  ->  ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) ) )
7775, 75, 76mp2an 653 . . . . . 6  |-  ( J 
tX  J )  e.  (TopOn `  ( CC  X.  CC ) )
7877toponunii 16670 . . . . . . 7  |-  ( CC 
X.  CC )  = 
U. ( J  tX  J )
7978restid 13338 . . . . . 6  |-  ( ( J  tX  J )  e.  (TopOn `  ( CC  X.  CC ) )  ->  ( ( J 
tX  J )t  ( CC 
X.  CC ) )  =  ( J  tX  J ) )
8077, 79ax-mp 8 . . . . 5  |-  ( ( J  tX  J )t  ( CC  X.  CC ) )  =  ( J 
tX  J )
8180eqcomi 2287 . . . 4  |-  ( J 
tX  J )  =  ( ( J  tX  J )t  ( CC  X.  CC ) )
8224anim1i 551 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =/=  ( G `  C ) )  -> 
( ( G `  z )  e.  X  /\  ( G `  z
)  =/=  ( G `
 C ) ) )
83 eldifsn 3749 . . . . . . 7  |-  ( ( G `  z )  e.  ( X  \  { ( G `  C ) } )  <-> 
( ( G `  z )  e.  X  /\  ( G `  z
)  =/=  ( G `
 C ) ) )
8482, 83sylibr 203 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =/=  ( G `  C ) )  -> 
( G `  z
)  e.  ( X 
\  { ( G `
 C ) } ) )
8584anasss 628 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( Y  \  { C } )  /\  ( G `  z )  =/=  ( G `  C
) ) )  -> 
( G `  z
)  e.  ( X 
\  { ( G `
 C ) } ) )
86 eldifsni 3750 . . . . . . . 8  |-  ( y  e.  ( X  \  { ( G `  C ) } )  ->  y  =/=  ( G `  C )
)
87 ifnefalse 3573 . . . . . . . 8  |-  ( y  =/=  ( G `  C )  ->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) )  =  ( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) ) )
8886, 87syl 15 . . . . . . 7  |-  ( y  e.  ( X  \  { ( G `  C ) } )  ->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) )  =  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) )
8988adantl 452 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { ( G `  C ) } ) )  ->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) )  =  ( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) ) )
906, 33, 35syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( G `  C
)  e.  X )
9117, 9, 90dvlem 19246 . . . . . 6  |-  ( (
ph  /\  y  e.  ( X  \  { ( G `  C ) } ) )  -> 
( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) )  e.  CC )
9289, 91eqeltrd 2357 . . . . 5  |-  ( (
ph  /\  y  e.  ( X  \  { ( G `  C ) } ) )  ->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) )  e.  CC )
93 limcresi 19235 . . . . . . 7  |-  ( G lim
CC  C )  C_  ( ( G  |`  ( Y  \  { C } ) ) lim CC  C )
946feqmptd 5575 . . . . . . . . . 10  |-  ( ph  ->  G  =  ( z  e.  Y  |->  ( G `
 z ) ) )
9594reseq1d 4954 . . . . . . . . 9  |-  ( ph  ->  ( G  |`  ( Y  \  { C }
) )  =  ( ( z  e.  Y  |->  ( G `  z
) )  |`  ( Y  \  { C }
) ) )
96 difss 3303 . . . . . . . . . 10  |-  ( Y 
\  { C }
)  C_  Y
97 resmpt 5000 . . . . . . . . . 10  |-  ( ( Y  \  { C } )  C_  Y  ->  ( ( z  e.  Y  |->  ( G `  z ) )  |`  ( Y  \  { C } ) )  =  ( z  e.  ( Y  \  { C } )  |->  ( G `
 z ) ) )
9896, 97ax-mp 8 . . . . . . . . 9  |-  ( ( z  e.  Y  |->  ( G `  z ) )  |`  ( Y  \  { C } ) )  =  ( z  e.  ( Y  \  { C } )  |->  ( G `  z ) )
9995, 98syl6eq 2331 . . . . . . . 8  |-  ( ph  ->  ( G  |`  ( Y  \  { C }
) )  =  ( z  e.  ( Y 
\  { C }
)  |->  ( G `  z ) ) )
10099oveq1d 5873 . . . . . . 7  |-  ( ph  ->  ( ( G  |`  ( Y  \  { C } ) ) lim CC  C )  =  ( ( z  e.  ( Y  \  { C } )  |->  ( G `
 z ) ) lim
CC  C ) )
10193, 100syl5sseq 3226 . . . . . 6  |-  ( ph  ->  ( G lim CC  C
)  C_  ( (
z  e.  ( Y 
\  { C }
)  |->  ( G `  z ) ) lim CC  C ) )
102 eqid 2283 . . . . . . . . . 10  |-  ( Jt  Y )  =  ( Jt  Y )
103102, 3dvcnp2 19269 . . . . . . . . 9  |-  ( ( ( T  C_  CC  /\  G : Y --> CC  /\  Y  C_  T )  /\  C  e.  dom  ( T  _D  G ) )  ->  G  e.  ( ( ( Jt  Y )  CnP  J ) `  C ) )
1045, 11, 12, 32, 103syl31anc 1185 . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( ( Jt  Y )  CnP  J
) `  C )
)
1053, 102cnplimc 19237 . . . . . . . . 9  |-  ( ( Y  C_  CC  /\  C  e.  Y )  ->  ( G  e.  ( (
( Jt  Y )  CnP  J
) `  C )  <->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) ) )
10660, 33, 105syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( G  e.  ( ( ( Jt  Y )  CnP  J ) `  C )  <->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C
) ) ) )
107104, 106mpbid 201 . . . . . . 7  |-  ( ph  ->  ( G : Y --> CC  /\  ( G `  C )  e.  ( G lim CC  C ) ) )
108107simprd 449 . . . . . 6  |-  ( ph  ->  ( G `  C
)  e.  ( G lim
CC  C ) )
109101, 108sseldd 3181 . . . . 5  |-  ( ph  ->  ( G `  C
)  e.  ( ( z  e.  ( Y 
\  { C }
)  |->  ( G `  z ) ) lim CC  C ) )
110 eqid 2283 . . . . . . . . 9  |-  ( Jt  S )  =  ( Jt  S )
111 eqid 2283 . . . . . . . . 9  |-  ( y  e.  ( X  \  { ( G `  C ) } ) 
|->  ( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) ) )  =  ( y  e.  ( X  \  { ( G `  C ) } ) 
|->  ( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) ) )
112110, 3, 111, 8, 17, 7eldv 19248 . . . . . . . 8  |-  ( ph  ->  ( ( G `  C ) ( S  _D  F ) K  <-> 
( ( G `  C )  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( y  e.  ( X  \  {
( G `  C
) } )  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) ) lim CC  ( G `  C ) ) ) ) )
11316, 112mpbid 201 . . . . . . 7  |-  ( ph  ->  ( ( G `  C )  e.  ( ( int `  ( Jt  S ) ) `  X )  /\  K  e.  ( ( y  e.  ( X  \  {
( G `  C
) } )  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) ) lim CC  ( G `  C ) ) ) )
114113simprd 449 . . . . . 6  |-  ( ph  ->  K  e.  ( ( y  e.  ( X 
\  { ( G `
 C ) } )  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) ) lim CC  ( G `  C )
) )
11588mpteq2ia 4102 . . . . . . 7  |-  ( y  e.  ( X  \  { ( G `  C ) } ) 
|->  if ( y  =  ( G `  C
) ,  K , 
( ( ( F `
 y )  -  ( F `  ( G `
 C ) ) )  /  ( y  -  ( G `  C ) ) ) ) )  =  ( y  e.  ( X 
\  { ( G `
 C ) } )  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) )
116115oveq1i 5868 . . . . . 6  |-  ( ( y  e.  ( X 
\  { ( G `
 C ) } )  |->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) ) ) lim CC  ( G `  C ) )  =  ( ( y  e.  ( X 
\  { ( G `
 C ) } )  |->  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) ) lim CC  ( G `  C )
)
117114, 116syl6eleqr 2374 . . . . 5  |-  ( ph  ->  K  e.  ( ( y  e.  ( X 
\  { ( G `
 C ) } )  |->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  (
y  -  ( G `
 C ) ) ) ) ) lim CC  ( G `  C ) ) )
118 eqeq1 2289 . . . . . 6  |-  ( y  =  ( G `  z )  ->  (
y  =  ( G `
 C )  <->  ( G `  z )  =  ( G `  C ) ) )
119 fveq2 5525 . . . . . . . 8  |-  ( y  =  ( G `  z )  ->  ( F `  y )  =  ( F `  ( G `  z ) ) )
120119oveq1d 5873 . . . . . . 7  |-  ( y  =  ( G `  z )  ->  (
( F `  y
)  -  ( F `
 ( G `  C ) ) )  =  ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) ) )
121 oveq1 5865 . . . . . . 7  |-  ( y  =  ( G `  z )  ->  (
y  -  ( G `
 C ) )  =  ( ( G `
 z )  -  ( G `  C ) ) )
122120, 121oveq12d 5876 . . . . . 6  |-  ( y  =  ( G `  z )  ->  (
( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) )  =  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )
123118, 122ifbieq2d 3585 . . . . 5  |-  ( y  =  ( G `  z )  ->  if ( y  =  ( G `  C ) ,  K ,  ( ( ( F `  y )  -  ( F `  ( G `  C ) ) )  /  ( y  -  ( G `  C ) ) ) )  =  if ( ( G `
 z )  =  ( G `  C
) ,  K , 
( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  /  ( ( G `  z )  -  ( G `  C ) ) ) ) )
124 iftrue 3571 . . . . . 6  |-  ( ( G `  z )  =  ( G `  C )  ->  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  =  K )
125124ad2antll 709 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( Y  \  { C } )  /\  ( G `  z )  =  ( G `  C ) ) )  ->  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) )  =  K )
12685, 92, 109, 117, 123, 125limcco 19243 . . . 4  |-  ( ph  ->  K  e.  ( ( z  e.  ( Y 
\  { C }
)  |->  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) ) ) lim CC  C ) )
12714simprd 449 . . . 4  |-  ( ph  ->  L  e.  ( ( z  e.  ( Y 
\  { C }
)  |->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
1283mulcn 18371 . . . . 5  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
1295, 11, 12dvcl 19249 . . . . . . 7  |-  ( (
ph  /\  C ( T  _D  G ) L )  ->  L  e.  CC )
1301, 129mpdan 649 . . . . . 6  |-  ( ph  ->  L  e.  CC )
131 opelxpi 4721 . . . . . 6  |-  ( ( K  e.  CC  /\  L  e.  CC )  -> 
<. K ,  L >.  e.  ( CC  X.  CC ) )
13219, 130, 131syl2anc 642 . . . . 5  |-  ( ph  -> 
<. K ,  L >.  e.  ( CC  X.  CC ) )
13378cncnpi 17007 . . . . 5  |-  ( (  x.  e.  ( ( J  tX  J )  Cn  J )  /\  <. K ,  L >.  e.  ( CC  X.  CC ) )  ->  x.  e.  ( ( ( J 
tX  J )  CnP 
J ) `  <. K ,  L >. )
)
134128, 132, 133sylancr 644 . . . 4  |-  ( ph  ->  x.  e.  ( ( ( J  tX  J
)  CnP  J ) `  <. K ,  L >. ) )
13555, 72, 74, 74, 3, 81, 126, 127, 134limccnp2 19242 . . 3  |-  ( ph  ->  ( K  x.  L
)  e.  ( ( z  e.  ( Y 
\  { C }
)  |->  ( if ( ( G `  z
)  =  ( G `
 C ) ,  K ,  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) ) lim CC  C
) )
136 oveq1 5865 . . . . . . . 8  |-  ( K  =  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) )  ->  ( K  x.  ( (
( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )  =  ( if ( ( G `  z
)  =  ( G `
 C ) ,  K ,  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) )
137136eqeq1d 2291 . . . . . . 7  |-  ( K  =  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) )  ->  (
( K  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) )  <->  ( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) ) )
138 oveq1 5865 . . . . . . . 8  |-  ( ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) )  =  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  -> 
( ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) )  x.  ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) ) )  =  ( if ( ( G `  z
)  =  ( G `
 C ) ,  K ,  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) )
139138eqeq1d 2291 . . . . . . 7  |-  ( ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) )  =  if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  -> 
( ( ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) )  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) )  <->  ( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) ) )
14020mul01d 9011 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( K  x.  0 )  =  0 )
14157, 58, 50syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  =  0  <->  ( G `  z )  =  ( G `  C ) ) )
142141biimpar 471 . . . . . . . . . . 11  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( G `  z )  -  ( G `  C )
)  =  0 )
143142oveq1d 5873 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  =  ( 0  / 
( z  -  C
) ) )
14465, 71div0d 9535 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( 0  /  (
z  -  C ) )  =  0 )
145144adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( 0  /  (
z  -  C ) )  =  0 )
146143, 145eqtrd 2315 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) )  =  0 )
147146oveq2d 5874 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( K  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( K  x.  0 ) )
148 fveq2 5525 . . . . . . . . . . . 12  |-  ( ( G `  z )  =  ( G `  C )  ->  ( F `  ( G `  z ) )  =  ( F `  ( G `  C )
) )
149 subeq0 9073 . . . . . . . . . . . . 13  |-  ( ( ( F `  ( G `  z )
)  e.  CC  /\  ( F `  ( G `
 C ) )  e.  CC )  -> 
( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  =  0  <->  ( F `  ( G `  z ) )  =  ( F `  ( G `  C )
) ) )
15026, 38, 149syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  =  0  <->  ( F `  ( G `  z ) )  =  ( F `  ( G `  C )
) ) )
151148, 150syl5ibr 212 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( G `  z )  =  ( G `  C )  ->  ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  =  0 ) )
152151imp 418 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  =  0 )
153152oveq1d 5873 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  /  ( z  -  C ) )  =  ( 0  / 
( z  -  C
) ) )
154153, 145eqtrd 2315 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  /  ( z  -  C ) )  =  0 )
155140, 147, 1543eqtr4d 2325 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  ( G `  z )  =  ( G `  C ) )  -> 
( K  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) )
15672adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( G `  z )  -  ( G `  C ) )  / 
( z  -  C
) )  e.  CC )
15754, 156mulcomd 8856 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) )  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) )  x.  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) ) )
158 eqidd 2284 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )
159158oveq2d 5874 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) )  x.  ( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  /  ( ( G `  z )  -  ( G `  C ) ) ) )  =  ( ( ( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) )  x.  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) ) )
16059adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( G `
 z )  -  ( G `  C ) )  e.  CC )
16165adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( z  -  C )  e.  CC )
16271adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( z  -  C )  =/=  0
)
16340, 160, 161, 53, 162dmdcand 9565 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( ( G `  z
)  -  ( G `
 C ) )  /  ( z  -  C ) )  x.  ( ( ( F `
 ( G `  z ) )  -  ( F `  ( G `
 C ) ) )  /  ( ( G `  z )  -  ( G `  C ) ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) )
164157, 159, 1633eqtrd 2319 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  ( Y  \  { C } ) )  /\  -.  ( G `  z
)  =  ( G `
 C ) )  ->  ( ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) )  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) )
165137, 139, 155, 164ifbothda 3595 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) )  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) )
166 fvco3 5596 . . . . . . . . 9  |-  ( ( G : Y --> X  /\  z  e.  Y )  ->  ( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )
16728, 62, 166syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )
168 fvco3 5596 . . . . . . . . . 10  |-  ( ( G : Y --> X  /\  C  e.  Y )  ->  ( ( F  o.  G ) `  C
)  =  ( F `
 ( G `  C ) ) )
1696, 33, 168syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( ( F  o.  G ) `  C
)  =  ( F `
 ( G `  C ) ) )
170169adantr 451 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( F  o.  G ) `  C
)  =  ( F `
 ( G `  C ) ) )
171167, 170oveq12d 5876 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( ( F  o.  G ) `  z )  -  (
( F  o.  G
) `  C )
)  =  ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) ) )
172171oveq1d 5873 . . . . . 6  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( ( ( ( F  o.  G ) `
 z )  -  ( ( F  o.  G ) `  C
) )  /  (
z  -  C ) )  =  ( ( ( F `  ( G `  z )
)  -  ( F `
 ( G `  C ) ) )  /  ( z  -  C ) ) )
173165, 172eqtr4d 2318 . . . . 5  |-  ( (
ph  /\  z  e.  ( Y  \  { C } ) )  -> 
( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `
 z ) )  -  ( F `  ( G `  C ) ) )  /  (
( G `  z
)  -  ( G `
 C ) ) ) )  x.  (
( ( G `  z )  -  ( G `  C )
)  /  ( z  -  C ) ) )  =  ( ( ( ( F  o.  G ) `  z
)  -  ( ( F  o.  G ) `
 C ) )  /  ( z  -  C ) ) )
174173mpteq2dva 4106 . . . 4  |-  ( ph  ->  ( z  e.  ( Y  \  { C } )  |->  ( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) )  =  ( z  e.  ( Y 
\  { C }
)  |->  ( ( ( ( F  o.  G
) `  z )  -  ( ( F  o.  G ) `  C ) )  / 
( z  -  C
) ) ) )
175174oveq1d 5873 . . 3  |-  ( ph  ->  ( ( z  e.  ( Y  \  { C } )  |->  ( if ( ( G `  z )  =  ( G `  C ) ,  K ,  ( ( ( F `  ( G `  z ) )  -  ( F `
 ( G `  C ) ) )  /  ( ( G `
 z )  -  ( G `  C ) ) ) )  x.  ( ( ( G `
 z )  -  ( G `  C ) )  /  ( z  -  C ) ) ) ) lim CC  C
)  =  ( ( z  e.  ( Y 
\  { C }
)  |->  ( ( ( ( F  o.  G
) `  z )  -  ( ( F  o.  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
176135, 175eleqtrd 2359 . 2  |-  ( ph  ->  ( K  x.  L
)  e.  ( ( z  e.  ( Y 
\  { C }
)  |->  ( ( ( ( F  o.  G
) `  z )  -  ( ( F  o.  G ) `  C ) )  / 
( z  -  C
) ) ) lim CC  C ) )
177 eqid 2283 . . 3  |-  ( z  e.  ( Y  \  { C } )  |->  ( ( ( ( F  o.  G ) `  z )  -  (
( F  o.  G
) `  C )
)  /  ( z  -  C ) ) )  =  ( z  e.  ( Y  \  { C } )  |->  ( ( ( ( F  o.  G ) `  z )  -  (
( F  o.  G
) `  C )
)  /  ( z  -  C ) ) )
178 fco 5398 . . . 4  |-  ( ( F : X --> CC  /\  G : Y --> X )  ->  ( F  o.  G ) : Y --> CC )
17917, 6, 178syl2anc 642 . . 3  |-  ( ph  ->  ( F  o.  G
) : Y --> CC )
1802, 3, 177, 5, 179, 12eldv 19248 . 2  |-  ( ph  ->  ( C ( T  _D  ( F  o.  G ) ) ( K  x.  L )  <-> 
( C  e.  ( ( int `  ( Jt  T ) ) `  Y )  /\  ( K  x.  L )  e.  ( ( z  e.  ( Y  \  { C } )  |->  ( ( ( ( F  o.  G ) `  z
)  -  ( ( F  o.  G ) `
 C ) )  /  ( z  -  C ) ) ) lim
CC  C ) ) ) )
18115, 176, 180mpbir2and 888 1  |-  ( ph  ->  C ( T  _D  ( F  o.  G
) ) ( K  x.  L ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    C_ wss 3152   ifcif 3565   {csn 3640   <.cop 3643   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   dom cdm 4689    |` cres 4691    o. ccom 4693   Rel wrel 4694   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737    x. cmul 8742    - cmin 9037    / cdiv 9423   ↾t crest 13325   TopOpenctopn 13326  ℂfldccnfld 16377  TopOnctopon 16632   intcnt 16754    Cn ccn 16954    CnP ccnp 16955    tX ctx 17255   lim CC climc 19212    _D cdv 19213
This theorem is referenced by:  dvco  19296  dvcof  19297  dvef  19327
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-ntr 16757  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator