MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcxp1 Structured version   Unicode version

Theorem dvcxp1 20626
Description: The derivative of a complex power with respect to the first argument. (Contributed by Mario Carneiro, 24-Feb-2015.)
Assertion
Ref Expression
dvcxp1  |-  ( A  e.  CC  ->  ( RR  _D  ( x  e.  RR+  |->  ( x  ^ c  A ) ) )  =  ( x  e.  RR+  |->  ( A  x.  ( x  ^ c 
( A  -  1 ) ) ) ) )
Distinct variable group:    x, A

Proof of Theorem dvcxp1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 reex 9081 . . . . 5  |-  RR  e.  _V
21prid1 3912 . . . 4  |-  RR  e.  { RR ,  CC }
32a1i 11 . . 3  |-  ( A  e.  CC  ->  RR  e.  { RR ,  CC } )
4 relogcl 20473 . . . 4  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
54adantl 453 . . 3  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( log `  x
)  e.  RR )
6 rpreccl 10635 . . . 4  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR+ )
76adantl 453 . . 3  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( 1  /  x
)  e.  RR+ )
8 recn 9080 . . . 4  |-  ( y  e.  RR  ->  y  e.  CC )
9 mulcl 9074 . . . . 5  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  y
)  e.  CC )
10 efcl 12685 . . . . 5  |-  ( ( A  x.  y )  e.  CC  ->  ( exp `  ( A  x.  y ) )  e.  CC )
119, 10syl 16 . . . 4  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( exp `  ( A  x.  y )
)  e.  CC )
128, 11sylan2 461 . . 3  |-  ( ( A  e.  CC  /\  y  e.  RR )  ->  ( exp `  ( A  x.  y )
)  e.  CC )
13 ovex 6106 . . . 4  |-  ( ( exp `  ( A  x.  y ) )  x.  A )  e. 
_V
1413a1i 11 . . 3  |-  ( ( A  e.  CC  /\  y  e.  RR )  ->  ( ( exp `  ( A  x.  y )
)  x.  A )  e.  _V )
15 dvrelog 20528 . . . 4  |-  ( RR 
_D  ( log  |`  RR+ )
)  =  ( x  e.  RR+  |->  ( 1  /  x ) )
16 relogf1o 20464 . . . . . . . 8  |-  ( log  |`  RR+ ) : RR+ -1-1-onto-> RR
17 f1of 5674 . . . . . . . 8  |-  ( ( log  |`  RR+ ) :
RR+
-1-1-onto-> RR  ->  ( log  |`  RR+ ) : RR+ --> RR )
1816, 17mp1i 12 . . . . . . 7  |-  ( A  e.  CC  ->  ( log  |`  RR+ ) : RR+ --> RR )
1918feqmptd 5779 . . . . . 6  |-  ( A  e.  CC  ->  ( log  |`  RR+ )  =  ( x  e.  RR+  |->  ( ( log  |`  RR+ ) `  x ) ) )
20 fvres 5745 . . . . . . 7  |-  ( x  e.  RR+  ->  ( ( log  |`  RR+ ) `  x )  =  ( log `  x ) )
2120mpteq2ia 4291 . . . . . 6  |-  ( x  e.  RR+  |->  ( ( log  |`  RR+ ) `  x ) )  =  ( x  e.  RR+  |->  ( log `  x ) )
2219, 21syl6eq 2484 . . . . 5  |-  ( A  e.  CC  ->  ( log  |`  RR+ )  =  ( x  e.  RR+  |->  ( log `  x ) ) )
2322oveq2d 6097 . . . 4  |-  ( A  e.  CC  ->  ( RR  _D  ( log  |`  RR+ )
)  =  ( RR 
_D  ( x  e.  RR+  |->  ( log `  x
) ) ) )
2415, 23syl5reqr 2483 . . 3  |-  ( A  e.  CC  ->  ( RR  _D  ( x  e.  RR+  |->  ( log `  x
) ) )  =  ( x  e.  RR+  |->  ( 1  /  x
) ) )
25 eqid 2436 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
2625cnfldtopon 18817 . . . . 5  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
27 toponmax 16993 . . . . 5  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  CC  e.  ( TopOpen ` fld ) )
2826, 27mp1i 12 . . . 4  |-  ( A  e.  CC  ->  CC  e.  ( TopOpen ` fld ) )
29 ax-resscn 9047 . . . . . 6  |-  RR  C_  CC
3029a1i 11 . . . . 5  |-  ( A  e.  CC  ->  RR  C_  CC )
31 df-ss 3334 . . . . 5  |-  ( RR  C_  CC  <->  ( RR  i^i  CC )  =  RR )
3230, 31sylib 189 . . . 4  |-  ( A  e.  CC  ->  ( RR  i^i  CC )  =  RR )
3313a1i 11 . . . 4  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( ( exp `  ( A  x.  y )
)  x.  A )  e.  _V )
34 cnex 9071 . . . . . . 7  |-  CC  e.  _V
3534prid2 3913 . . . . . 6  |-  CC  e.  { RR ,  CC }
3635a1i 11 . . . . 5  |-  ( A  e.  CC  ->  CC  e.  { RR ,  CC } )
37 simpl 444 . . . . 5  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  A  e.  CC )
38 efcl 12685 . . . . . 6  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
3938adantl 453 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( exp `  x
)  e.  CC )
40 simpr 448 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  y  e.  CC )
41 ax-1cn 9048 . . . . . . . 8  |-  1  e.  CC
4241a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  1  e.  CC )
4336dvmptid 19843 . . . . . . 7  |-  ( A  e.  CC  ->  ( CC  _D  ( y  e.  CC  |->  y ) )  =  ( y  e.  CC  |->  1 ) )
44 id 20 . . . . . . 7  |-  ( A  e.  CC  ->  A  e.  CC )
4536, 40, 42, 43, 44dvmptcmul 19850 . . . . . 6  |-  ( A  e.  CC  ->  ( CC  _D  ( y  e.  CC  |->  ( A  x.  y ) ) )  =  ( y  e.  CC  |->  ( A  x.  1 ) ) )
46 mulid1 9088 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
4746mpteq2dv 4296 . . . . . 6  |-  ( A  e.  CC  ->  (
y  e.  CC  |->  ( A  x.  1 ) )  =  ( y  e.  CC  |->  A ) )
4845, 47eqtrd 2468 . . . . 5  |-  ( A  e.  CC  ->  ( CC  _D  ( y  e.  CC  |->  ( A  x.  y ) ) )  =  ( y  e.  CC  |->  A ) )
49 eff 12684 . . . . . . . . . . 11  |-  exp : CC
--> CC
5049a1i 11 . . . . . . . . . 10  |-  ( A  e.  CC  ->  exp : CC --> CC )
5150feqmptd 5779 . . . . . . . . 9  |-  ( A  e.  CC  ->  exp  =  ( x  e.  CC  |->  ( exp `  x
) ) )
5251eqcomd 2441 . . . . . . . 8  |-  ( A  e.  CC  ->  (
x  e.  CC  |->  ( exp `  x ) )  =  exp )
5352oveq2d 6097 . . . . . . 7  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  CC  |->  ( exp `  x
) ) )  =  ( CC  _D  exp ) )
54 dvef 19864 . . . . . . 7  |-  ( CC 
_D  exp )  =  exp
5553, 54syl6eq 2484 . . . . . 6  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  CC  |->  ( exp `  x
) ) )  =  exp )
5655, 51eqtrd 2468 . . . . 5  |-  ( A  e.  CC  ->  ( CC  _D  ( x  e.  CC  |->  ( exp `  x
) ) )  =  ( x  e.  CC  |->  ( exp `  x ) ) )
57 fveq2 5728 . . . . 5  |-  ( x  =  ( A  x.  y )  ->  ( exp `  x )  =  ( exp `  ( A  x.  y )
) )
5836, 36, 9, 37, 39, 39, 48, 56, 57, 57dvmptco 19858 . . . 4  |-  ( A  e.  CC  ->  ( CC  _D  ( y  e.  CC  |->  ( exp `  ( A  x.  y )
) ) )  =  ( y  e.  CC  |->  ( ( exp `  ( A  x.  y )
)  x.  A ) ) )
5925, 3, 28, 32, 11, 33, 58dvmptres3 19842 . . 3  |-  ( A  e.  CC  ->  ( RR  _D  ( y  e.  RR  |->  ( exp `  ( A  x.  y )
) ) )  =  ( y  e.  RR  |->  ( ( exp `  ( A  x.  y )
)  x.  A ) ) )
60 oveq2 6089 . . . 4  |-  ( y  =  ( log `  x
)  ->  ( A  x.  y )  =  ( A  x.  ( log `  x ) ) )
6160fveq2d 5732 . . 3  |-  ( y  =  ( log `  x
)  ->  ( exp `  ( A  x.  y
) )  =  ( exp `  ( A  x.  ( log `  x
) ) ) )
6261oveq1d 6096 . . 3  |-  ( y  =  ( log `  x
)  ->  ( ( exp `  ( A  x.  y ) )  x.  A )  =  ( ( exp `  ( A  x.  ( log `  x ) ) )  x.  A ) )
633, 3, 5, 7, 12, 14, 24, 59, 61, 62dvmptco 19858 . 2  |-  ( A  e.  CC  ->  ( RR  _D  ( x  e.  RR+  |->  ( exp `  ( A  x.  ( log `  x ) ) ) ) )  =  ( x  e.  RR+  |->  ( ( ( exp `  ( A  x.  ( log `  x ) ) )  x.  A )  x.  ( 1  /  x
) ) ) )
64 rpcn 10620 . . . . . 6  |-  ( x  e.  RR+  ->  x  e.  CC )
6564adantl 453 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  x  e.  CC )
66 rpne0 10627 . . . . . 6  |-  ( x  e.  RR+  ->  x  =/=  0 )
6766adantl 453 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  x  =/=  0 )
68 simpl 444 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  A  e.  CC )
6965, 67, 68cxpefd 20603 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( x  ^ c  A )  =  ( exp `  ( A  x.  ( log `  x
) ) ) )
7069mpteq2dva 4295 . . 3  |-  ( A  e.  CC  ->  (
x  e.  RR+  |->  ( x  ^ c  A ) )  =  ( x  e.  RR+  |->  ( exp `  ( A  x.  ( log `  x ) ) ) ) )
7170oveq2d 6097 . 2  |-  ( A  e.  CC  ->  ( RR  _D  ( x  e.  RR+  |->  ( x  ^ c  A ) ) )  =  ( RR  _D  ( x  e.  RR+  |->  ( exp `  ( A  x.  ( log `  x ) ) ) ) ) )
7241a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
1  e.  CC )
7365, 67, 68, 72cxpsubd 20609 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( x  ^ c 
( A  -  1 ) )  =  ( ( x  ^ c  A )  /  (
x  ^ c  1 ) ) )
7465cxp1d 20597 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( x  ^ c 
1 )  =  x )
7574oveq2d 6097 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( ( x  ^ c  A )  /  (
x  ^ c  1 ) )  =  ( ( x  ^ c  A )  /  x
) )
7665, 68cxpcld 20599 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( x  ^ c  A )  e.  CC )
7776, 65, 67divrecd 9793 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( ( x  ^ c  A )  /  x
)  =  ( ( x  ^ c  A
)  x.  ( 1  /  x ) ) )
7873, 75, 773eqtrd 2472 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( x  ^ c 
( A  -  1 ) )  =  ( ( x  ^ c  A )  x.  (
1  /  x ) ) )
7978oveq2d 6097 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( A  x.  (
x  ^ c  ( A  -  1 ) ) )  =  ( A  x.  ( ( x  ^ c  A
)  x.  ( 1  /  x ) ) ) )
807rpcnd 10650 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( 1  /  x
)  e.  CC )
8168, 76, 80mul12d 9275 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( A  x.  (
( x  ^ c  A )  x.  (
1  /  x ) ) )  =  ( ( x  ^ c  A )  x.  ( A  x.  ( 1  /  x ) ) ) )
8276, 68, 80mulassd 9111 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( ( ( x  ^ c  A )  x.  A )  x.  ( 1  /  x
) )  =  ( ( x  ^ c  A )  x.  ( A  x.  ( 1  /  x ) ) ) )
8381, 82eqtr4d 2471 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( A  x.  (
( x  ^ c  A )  x.  (
1  /  x ) ) )  =  ( ( ( x  ^ c  A )  x.  A
)  x.  ( 1  /  x ) ) )
8469oveq1d 6096 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( ( x  ^ c  A )  x.  A
)  =  ( ( exp `  ( A  x.  ( log `  x
) ) )  x.  A ) )
8584oveq1d 6096 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( ( ( x  ^ c  A )  x.  A )  x.  ( 1  /  x
) )  =  ( ( ( exp `  ( A  x.  ( log `  x ) ) )  x.  A )  x.  ( 1  /  x
) ) )
8679, 83, 853eqtrd 2472 . . 3  |-  ( ( A  e.  CC  /\  x  e.  RR+ )  -> 
( A  x.  (
x  ^ c  ( A  -  1 ) ) )  =  ( ( ( exp `  ( A  x.  ( log `  x ) ) )  x.  A )  x.  ( 1  /  x
) ) )
8786mpteq2dva 4295 . 2  |-  ( A  e.  CC  ->  (
x  e.  RR+  |->  ( A  x.  ( x  ^ c  ( A  - 
1 ) ) ) )  =  ( x  e.  RR+  |->  ( ( ( exp `  ( A  x.  ( log `  x ) ) )  x.  A )  x.  ( 1  /  x
) ) ) )
8863, 71, 873eqtr4d 2478 1  |-  ( A  e.  CC  ->  ( RR  _D  ( x  e.  RR+  |->  ( x  ^ c  A ) ) )  =  ( x  e.  RR+  |->  ( A  x.  ( x  ^ c 
( A  -  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   _Vcvv 2956    i^i cin 3319    C_ wss 3320   {cpr 3815    e. cmpt 4266    |` cres 4880   -->wf 5450   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    x. cmul 8995    - cmin 9291    / cdiv 9677   RR+crp 10612   expce 12664   TopOpenctopn 13649  ℂfldccnfld 16703  TopOnctopon 16959    _D cdv 19750   logclog 20452    ^ c ccxp 20453
This theorem is referenced by:  dvsqr  20628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-sin 12672  df-cos 12673  df-pi 12675  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-cxp 20455
  Copyright terms: Public domain W3C validator