MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdscmul Unicode version

Theorem dvdscmul 12839
Description: Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdscmul  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N
) ) )

Proof of Theorem dvdscmul
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 3simpc 956 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 zmulcl 10288 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  x.  M
)  e.  ZZ )
323adant3 977 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  ZZ )
4 zmulcl 10288 . . . . 5  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  e.  ZZ )
543adant2 976 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N )  e.  ZZ )
63, 5jca 519 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ ) )
7 simpr 448 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
8 zcn 10251 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 10251 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  CC )
10 zcn 10251 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
11 mul12 9196 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  K  e.  CC  /\  M  e.  CC )  ->  (
x  x.  ( K  x.  M ) )  =  ( K  x.  ( x  x.  M
) ) )
128, 9, 10, 11syl3an 1226 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
x  x.  ( K  x.  M ) )  =  ( K  x.  ( x  x.  M
) ) )
13123coml 1160 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  x  e.  ZZ )  ->  (
x  x.  ( K  x.  M ) )  =  ( K  x.  ( x  x.  M
) ) )
14133expa 1153 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  ( K  x.  M
) )  =  ( K  x.  ( x  x.  M ) ) )
15143adantl3 1115 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( x  x.  ( K  x.  M
) )  =  ( K  x.  ( x  x.  M ) ) )
16 oveq2 6056 . . . . 5  |-  ( ( x  x.  M )  =  N  ->  ( K  x.  ( x  x.  M ) )  =  ( K  x.  N
) )
1715, 16sylan9eq 2464 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  /\  (
x  x.  M )  =  N )  -> 
( x  x.  ( K  x.  M )
)  =  ( K  x.  N ) )
1817ex 424 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( x  x.  ( K  x.  M
) )  =  ( K  x.  N ) ) )
191, 6, 7, 18dvds1lem 12824 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N
) ) )
20193coml 1160 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4180  (class class class)co 6048   CCcc 8952    x. cmul 8959   ZZcz 10246    || cdivides 12815
This theorem is referenced by:  dvdscmulr  12841  mulgcd  13009  dvdsmulgcd  13017  rpmulgcd2  13068  pcprendvds2  13178  pcpremul  13180  prmreclem1  13247  sylow3lem4  15227  ablfacrp2  15588  dvdsmulf1o  20940  jm2.27a  26974  jm2.27c  26976
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-ltxr 9089  df-sub 9257  df-neg 9258  df-nn 9965  df-n0 10186  df-z 10247  df-dvds 12816
  Copyright terms: Public domain W3C validator