MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdscmulr Structured version   Unicode version

Theorem dvdscmulr 12878
Description: Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdscmulr  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( K  x.  M )  ||  ( K  x.  N )  <->  M 
||  N ) )

Proof of Theorem dvdscmulr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 zmulcl 10324 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( K  x.  M
)  e.  ZZ )
213adant3 977 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  ZZ )
3 zmulcl 10324 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N
)  e.  ZZ )
433adant2 976 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  N )  e.  ZZ )
52, 4jca 519 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ ) )
653coml 1160 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  x.  M
)  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ ) )
763adant3r 1181 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( K  x.  M )  e.  ZZ  /\  ( K  x.  N
)  e.  ZZ ) )
8 3simpa 954 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( M  e.  ZZ  /\  N  e.  ZZ ) )
9 simpr 448 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
10 zcn 10287 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
11 zcn 10287 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  CC )
1210, 11anim12i 550 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( x  e.  CC  /\  M  e.  CC ) )
13 zcn 10287 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
14 zcn 10287 . . . . . . . . . . . 12  |-  ( K  e.  ZZ  ->  K  e.  CC )
1514anim1i 552 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  K  =/=  0 )  -> 
( K  e.  CC  /\  K  =/=  0 ) )
16 mul12 9232 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  CC  /\  x  e.  CC  /\  M  e.  CC )  ->  ( K  x.  ( x  x.  M ) )  =  ( x  x.  ( K  x.  M )
) )
17163adant1r 1177 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  CC  /\  K  =/=  0 )  /\  x  e.  CC  /\  M  e.  CC )  ->  ( K  x.  ( x  x.  M
) )  =  ( x  x.  ( K  x.  M ) ) )
18173expb 1154 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  CC  /\  K  =/=  0 )  /\  ( x  e.  CC  /\  M  e.  CC ) )  -> 
( K  x.  (
x  x.  M ) )  =  ( x  x.  ( K  x.  M ) ) )
1918ancoms 440 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  ( K  e.  CC  /\  K  =/=  0 ) )  -> 
( K  x.  (
x  x.  M ) )  =  ( x  x.  ( K  x.  M ) ) )
20193adant2 976 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( K  x.  ( x  x.  M
) )  =  ( x  x.  ( K  x.  M ) ) )
2120eqeq1d 2444 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( ( K  x.  ( x  x.  M ) )  =  ( K  x.  N
)  <->  ( x  x.  ( K  x.  M
) )  =  ( K  x.  N ) ) )
22 mulcl 9074 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( x  x.  M
)  e.  CC )
23 mulcan 9659 . . . . . . . . . . . . 13  |-  ( ( ( x  x.  M
)  e.  CC  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  -> 
( ( K  x.  ( x  x.  M
) )  =  ( K  x.  N )  <-> 
( x  x.  M
)  =  N ) )
2422, 23syl3an1 1217 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( ( K  x.  ( x  x.  M ) )  =  ( K  x.  N
)  <->  ( x  x.  M )  =  N ) )
2521, 24bitr3d 247 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
x  x.  ( K  x.  M ) )  =  ( K  x.  N )  <->  ( x  x.  M )  =  N ) )
2612, 13, 15, 25syl3an 1226 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
x  x.  ( K  x.  M ) )  =  ( K  x.  N )  <->  ( x  x.  M )  =  N ) )
27263expb 1154 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  ( ( x  x.  ( K  x.  M ) )  =  ( K  x.  N
)  <->  ( x  x.  M )  =  N ) )
28273impa 1148 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  ( ( x  x.  ( K  x.  M ) )  =  ( K  x.  N
)  <->  ( x  x.  M )  =  N ) )
29283coml 1160 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( K  x.  M )
)  =  ( K  x.  N )  <->  ( x  x.  M )  =  N ) )
30293expia 1155 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  (
x  e.  ZZ  ->  ( ( x  x.  ( K  x.  M )
)  =  ( K  x.  N )  <->  ( x  x.  M )  =  N ) ) )
31303impb 1149 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( x  e.  ZZ  ->  ( ( x  x.  ( K  x.  M
) )  =  ( K  x.  N )  <-> 
( x  x.  M
)  =  N ) ) )
3231imp 419 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( K  x.  M )
)  =  ( K  x.  N )  <->  ( x  x.  M )  =  N ) )
3332biimpd 199 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( K  x.  M )
)  =  ( K  x.  N )  -> 
( x  x.  M
)  =  N ) )
347, 8, 9, 33dvds1lem 12861 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( K  x.  M )  ||  ( K  x.  N )  ->  M  ||  N ) )
35 dvdscmul 12876 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N
) ) )
36353adant3r 1181 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( M  ||  N  ->  ( K  x.  M
)  ||  ( K  x.  N ) ) )
3734, 36impbid 184 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( K  x.  M )  ||  ( K  x.  N )  <->  M 
||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   class class class wbr 4212  (class class class)co 6081   CCcc 8988   0cc0 8990    x. cmul 8995   ZZcz 10282    || cdivides 12852
This theorem is referenced by:  bitsmod  12948  mulgcd  13046  pcpremul  13217  4sqlem17  13329  odmulg  15192  ablfacrp2  15625  ablfac1b  15628  pgpfac1lem3a  15634  znrrg  16846  fsumdvdsdiaglem  20968  jm2.20nn  27068
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-dvds 12853
  Copyright terms: Public domain W3C validator