MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsle Unicode version

Theorem dvdsle 12590
Description: The divisors of a positive integer are bounded by it. The proof does not use  /. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsle  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  ||  N  ->  M  <_  N )
)

Proof of Theorem dvdsle
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 breq2 4043 . . . . . . . . . . . . 13  |-  ( M  =  if ( M  e.  ZZ ,  M ,  1 )  -> 
( N  <  M  <->  N  <  if ( M  e.  ZZ ,  M ,  1 ) ) )
2 oveq2 5882 . . . . . . . . . . . . . 14  |-  ( M  =  if ( M  e.  ZZ ,  M ,  1 )  -> 
( n  x.  M
)  =  ( n  x.  if ( M  e.  ZZ ,  M ,  1 ) ) )
32neeq1d 2472 . . . . . . . . . . . . 13  |-  ( M  =  if ( M  e.  ZZ ,  M ,  1 )  -> 
( ( n  x.  M )  =/=  N  <->  ( n  x.  if ( M  e.  ZZ ,  M ,  1 ) )  =/=  N ) )
41, 3imbi12d 311 . . . . . . . . . . . 12  |-  ( M  =  if ( M  e.  ZZ ,  M ,  1 )  -> 
( ( N  < 
M  ->  ( n  x.  M )  =/=  N
)  <->  ( N  < 
if ( M  e.  ZZ ,  M , 
1 )  ->  (
n  x.  if ( M  e.  ZZ ,  M ,  1 ) )  =/=  N ) ) )
5 breq1 4042 . . . . . . . . . . . . 13  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( N  <  if ( M  e.  ZZ ,  M ,  1 )  <-> 
if ( N  e.  NN ,  N , 
1 )  <  if ( M  e.  ZZ ,  M ,  1 ) ) )
6 neeq2 2468 . . . . . . . . . . . . 13  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ( n  x.  if ( M  e.  ZZ ,  M , 
1 ) )  =/= 
N  <->  ( n  x.  if ( M  e.  ZZ ,  M , 
1 ) )  =/= 
if ( N  e.  NN ,  N , 
1 ) ) )
75, 6imbi12d 311 . . . . . . . . . . . 12  |-  ( N  =  if ( N  e.  NN ,  N ,  1 )  -> 
( ( N  < 
if ( M  e.  ZZ ,  M , 
1 )  ->  (
n  x.  if ( M  e.  ZZ ,  M ,  1 ) )  =/=  N )  <-> 
( if ( N  e.  NN ,  N ,  1 )  < 
if ( M  e.  ZZ ,  M , 
1 )  ->  (
n  x.  if ( M  e.  ZZ ,  M ,  1 ) )  =/=  if ( N  e.  NN ,  N ,  1 ) ) ) )
8 oveq1 5881 . . . . . . . . . . . . . 14  |-  ( n  =  if ( n  e.  ZZ ,  n ,  1 )  -> 
( n  x.  if ( M  e.  ZZ ,  M ,  1 ) )  =  ( if ( n  e.  ZZ ,  n ,  1 )  x.  if ( M  e.  ZZ ,  M ,  1 ) ) )
98neeq1d 2472 . . . . . . . . . . . . 13  |-  ( n  =  if ( n  e.  ZZ ,  n ,  1 )  -> 
( ( n  x.  if ( M  e.  ZZ ,  M , 
1 ) )  =/= 
if ( N  e.  NN ,  N , 
1 )  <->  ( if ( n  e.  ZZ ,  n ,  1 )  x.  if ( M  e.  ZZ ,  M ,  1 ) )  =/=  if ( N  e.  NN ,  N ,  1 ) ) )
109imbi2d 307 . . . . . . . . . . . 12  |-  ( n  =  if ( n  e.  ZZ ,  n ,  1 )  -> 
( ( if ( N  e.  NN ,  N ,  1 )  <  if ( M  e.  ZZ ,  M ,  1 )  -> 
( n  x.  if ( M  e.  ZZ ,  M ,  1 ) )  =/=  if ( N  e.  NN ,  N ,  1 ) )  <->  ( if ( N  e.  NN ,  N ,  1 )  <  if ( M  e.  ZZ ,  M ,  1 )  -> 
( if ( n  e.  ZZ ,  n ,  1 )  x.  if ( M  e.  ZZ ,  M , 
1 ) )  =/= 
if ( N  e.  NN ,  N , 
1 ) ) ) )
11 1z 10069 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
1211elimel 3630 . . . . . . . . . . . . 13  |-  if ( M  e.  ZZ ,  M ,  1 )  e.  ZZ
13 1nn 9773 . . . . . . . . . . . . . 14  |-  1  e.  NN
1413elimel 3630 . . . . . . . . . . . . 13  |-  if ( N  e.  NN ,  N ,  1 )  e.  NN
1511elimel 3630 . . . . . . . . . . . . 13  |-  if ( n  e.  ZZ ,  n ,  1 )  e.  ZZ
1612, 14, 15dvdslelem 12589 . . . . . . . . . . . 12  |-  ( if ( N  e.  NN ,  N ,  1 )  <  if ( M  e.  ZZ ,  M ,  1 )  -> 
( if ( n  e.  ZZ ,  n ,  1 )  x.  if ( M  e.  ZZ ,  M , 
1 ) )  =/= 
if ( N  e.  NN ,  N , 
1 ) )
174, 7, 10, 16dedth3h 3621 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  n  e.  ZZ )  ->  ( N  <  M  ->  (
n  x.  M )  =/=  N ) )
18173expia 1153 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( n  e.  ZZ  ->  ( N  <  M  ->  ( n  x.  M
)  =/=  N ) ) )
1918com23 72 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  <  M  ->  ( n  e.  ZZ  ->  ( n  x.  M
)  =/=  N ) ) )
20193impia 1148 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  N  <  M )  ->  (
n  e.  ZZ  ->  ( n  x.  M )  =/=  N ) )
2120imp 418 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  N  <  M )  /\  n  e.  ZZ )  ->  ( n  x.  M
)  =/=  N )
2221neneqd 2475 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN  /\  N  <  M )  /\  n  e.  ZZ )  ->  -.  ( n  x.  M )  =  N )
2322nrexdv 2659 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  N  <  M )  ->  -.  E. n  e.  ZZ  (
n  x.  M )  =  N )
24 nnz 10061 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  ZZ )
25 divides 12549 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. n  e.  ZZ  (
n  x.  M )  =  N ) )
2624, 25sylan2 460 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  ||  N  <->  E. n  e.  ZZ  (
n  x.  M )  =  N ) )
27263adant3 975 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  N  <  M )  ->  ( M  ||  N  <->  E. n  e.  ZZ  ( n  x.  M )  =  N ) )
2823, 27mtbird 292 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN  /\  N  <  M )  ->  -.  M  ||  N )
29283expia 1153 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  <  M  ->  -.  M  ||  N
) )
3029con2d 107 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  ||  N  ->  -.  N  <  M
) )
31 zre 10044 . . 3  |-  ( M  e.  ZZ  ->  M  e.  RR )
32 nnre 9769 . . 3  |-  ( N  e.  NN  ->  N  e.  RR )
33 lenlt 8917 . . 3  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <_  N  <->  -.  N  <  M ) )
3431, 32, 33syl2an 463 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  <_  N  <->  -.  N  <  M ) )
3530, 34sylibrd 225 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  ||  N  ->  M  <_  N )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   ifcif 3578   class class class wbr 4039  (class class class)co 5874   RRcr 8752   1c1 8754    x. cmul 8758    < clt 8883    <_ cle 8884   NNcn 9762   ZZcz 10040    || cdivides 12547
This theorem is referenced by:  dvdsleabs  12591  dvdseq  12592  fzm1ndvds  12596  fzo0dvdseq  12597  bitsfzolem  12641  bitsfzo  12642  bitsinv1lem  12648  gcd1  12727  bezoutlem4  12736  gcdeq  12747  isprm3  12783  qredeq  12801  isprm6  12804  isprm5  12807  maxprmfct  12808  prmfac1  12813  pcpre1  12911  pcidlem  12940  pcprod  12959  pcfac  12963  pockthg  12969  prmreclem1  12979  prmreclem3  12981  prmreclem5  12983  1arith  12990  4sqlem11  13018  gexcl2  14916  sylow1lem1  14925  sylow1lem5  14929  gexex  15161  ablfac1eu  15324  ablfaclem3  15338  znidomb  16531  sgmss  20360  dvdsflsumcom  20444  chtublem  20466  vmasum  20471  logfac2  20472  bposlem6  20544  lgsdir  20585  lgsdilem2  20586  lgsne0  20588  lgsqrlem2  20597  lgsquadlem2  20610  2sqlem8  20627  2sqblem  20632  nn0prpw  26342  bezoutr1  27176
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-z 10041  df-dvds 12548
  Copyright terms: Public domain W3C validator