MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmod Unicode version

Theorem dvdsmod 12585
Description: Any number  K whose mod base  N is divisible by a divisor  P of the base is also divisible by  P. This means that primes will also be relatively prime to the base when reduced  mod  N for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
dvdsmod  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  K )
)

Proof of Theorem dvdsmod
StepHypRef Expression
1 simpl3 960 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  ZZ )
21zred 10117 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  RR )
3 simpl2 959 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  NN )
43nnrpd 10389 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  RR+ )
5 modval 10975 . . . 4  |-  ( ( K  e.  RR  /\  N  e.  RR+ )  -> 
( K  mod  N
)  =  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) )
62, 4, 5syl2anc 642 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  mod  N )  =  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) )
76breq2d 4035 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
8 simpr 447 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  N
)
9 simpl1 958 . . . . . . . . 9  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  e.  NN )
109nnzd 10116 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  e.  ZZ )
113nnzd 10116 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  ZZ )
122, 3nndivred 9794 . . . . . . . . 9  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  /  N )  e.  RR )
1312flcld 10930 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( |_ `  ( K  /  N
) )  e.  ZZ )
14 dvdsmultr1 12563 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ  /\  ( |_ `  ( K  /  N ) )  e.  ZZ )  ->  ( P  ||  N  ->  P  ||  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) )
1510, 11, 13, 14syl3anc 1182 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  N  ->  P  ||  ( N  x.  ( |_ `  ( K  /  N
) ) ) ) )
168, 15mpd 14 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  ( N  x.  ( |_ `  ( K  /  N
) ) ) )
1711, 13zmulcld 10123 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  ZZ )
1817zcnd 10118 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  CC )
1918subid1d 9146 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( N  x.  ( |_ `  ( K  /  N
) ) )  - 
0 )  =  ( N  x.  ( |_
`  ( K  /  N ) ) ) )
2016, 19breqtrrd 4049 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  (
( N  x.  ( |_ `  ( K  /  N ) ) )  -  0 ) )
21 0z 10035 . . . . . . 7  |-  0  e.  ZZ
2221a1i 10 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  0  e.  ZZ )
23 moddvds 12538 . . . . . 6  |-  ( ( P  e.  NN  /\  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  ZZ  /\  0  e.  ZZ )  ->  (
( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  =  ( 0  mod 
P )  <->  P  ||  (
( N  x.  ( |_ `  ( K  /  N ) ) )  -  0 ) ) )
249, 17, 22, 23syl3anc 1182 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( ( N  x.  ( |_
`  ( K  /  N ) ) )  mod  P )  =  ( 0  mod  P
)  <->  P  ||  ( ( N  x.  ( |_
`  ( K  /  N ) ) )  -  0 ) ) )
2520, 24mpbird 223 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( N  x.  ( |_ `  ( K  /  N
) ) )  mod 
P )  =  ( 0  mod  P ) )
2625eqeq2d 2294 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  <-> 
( K  mod  P
)  =  ( 0  mod  P ) ) )
27 moddvds 12538 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  ZZ  /\  ( N  x.  ( |_ `  ( K  /  N
) ) )  e.  ZZ )  ->  (
( K  mod  P
)  =  ( ( N  x.  ( |_
`  ( K  /  N ) ) )  mod  P )  <->  P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
289, 1, 17, 27syl3anc 1182 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  <-> 
P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
29 moddvds 12538 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  ZZ  /\  0  e.  ZZ )  ->  (
( K  mod  P
)  =  ( 0  mod  P )  <->  P  ||  ( K  -  0 ) ) )
309, 1, 22, 29syl3anc 1182 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( 0  mod  P
)  <->  P  ||  ( K  -  0 ) ) )
3126, 28, 303bitr3d 274 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N
) ) ) )  <-> 
P  ||  ( K  -  0 ) ) )
321zcnd 10118 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  CC )
3332subid1d 9146 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  - 
0 )  =  K )
3433breq2d 4035 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  -  0
)  <->  P  ||  K ) )
357, 31, 343bitrd 270 1  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737    x. cmul 8742    - cmin 9037    / cdiv 9423   NNcn 9746   ZZcz 10024   RR+crp 10354   |_cfl 10924    mod cmo 10973    || cdivides 12531
This theorem is referenced by:  ppiublem1  20441  lgsdir2lem2  20563
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-mod 10974  df-dvds 12532
  Copyright terms: Public domain W3C validator