MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulc Unicode version

Theorem dvdsmulc 12832
Description: Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmulc  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K
) ) )

Proof of Theorem dvdsmulc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 3simpc 956 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
2 zmulcl 10280 . . . . . 6  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  x.  K
)  e.  ZZ )
323adant2 976 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  x.  K )  e.  ZZ )
4 zmulcl 10280 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  x.  K
)  e.  ZZ )
543adant1 975 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  x.  K )  e.  ZZ )
63, 5jca 519 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  x.  K
)  e.  ZZ  /\  ( N  x.  K
)  e.  ZZ ) )
763comr 1161 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  x.  K
)  e.  ZZ  /\  ( N  x.  K
)  e.  ZZ ) )
8 simpr 448 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
9 zcn 10243 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
10 zcn 10243 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
11 zcn 10243 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  CC )
12 mulass 9034 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  M  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  M
)  x.  K )  =  ( x  x.  ( M  x.  K
) ) )
139, 10, 11, 12syl3an 1226 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  K  e.  ZZ )  ->  (
( x  x.  M
)  x.  K )  =  ( x  x.  ( M  x.  K
) ) )
14133com13 1158 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  x  e.  ZZ )  ->  (
( x  x.  M
)  x.  K )  =  ( x  x.  ( M  x.  K
) ) )
15143expa 1153 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  x.  K )  =  ( x  x.  ( M  x.  K ) ) )
16153adantl3 1115 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  x.  K )  =  ( x  x.  ( M  x.  K ) ) )
17 oveq1 6047 . . . . 5  |-  ( ( x  x.  M )  =  N  ->  (
( x  x.  M
)  x.  K )  =  ( N  x.  K ) )
1816, 17sylan9req 2457 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  /\  (
x  x.  M )  =  N )  -> 
( x  x.  ( M  x.  K )
)  =  ( N  x.  K ) )
1918ex 424 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x  x.  M )  =  N  ->  ( x  x.  ( M  x.  K
) )  =  ( N  x.  K ) ) )
201, 7, 8, 19dvds1lem 12816 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K
) ) )
21203coml 1160 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4172  (class class class)co 6040   CCcc 8944    x. cmul 8951   ZZcz 10238    || cdivides 12807
This theorem is referenced by:  dvdsmulcr  12834  coprmdvds2  13058  mulgcddvds  13059  rpmulgcd2  13060  pcpremul  13172  odadd2  15419  ablfacrp2  15580  znrrg  16801  dvdsmulf1o  20932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-ltxr 9081  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-dvds 12808
  Copyright terms: Public domain W3C validator