MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulcr Unicode version

Theorem dvdsmulcr 12799
Description: Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmulcr  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  <->  M 
||  N ) )

Proof of Theorem dvdsmulcr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 zmulcl 10249 . . . . . 6  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  x.  K
)  e.  ZZ )
213adant2 976 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  x.  K )  e.  ZZ )
3 zmulcl 10249 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  x.  K
)  e.  ZZ )
433adant1 975 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  x.  K )  e.  ZZ )
52, 4jca 519 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  x.  K
)  e.  ZZ  /\  ( N  x.  K
)  e.  ZZ ) )
653adant3r 1181 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  e.  ZZ  /\  ( N  x.  K
)  e.  ZZ ) )
7 3simpa 954 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( M  e.  ZZ  /\  N  e.  ZZ ) )
8 simpr 448 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
9 zcn 10212 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
10 zcn 10212 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  CC )
119, 10anim12i 550 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  ->  ( x  e.  CC  /\  M  e.  CC ) )
12 zcn 10212 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
13 zcn 10212 . . . . . . . . . . . 12  |-  ( K  e.  ZZ  ->  K  e.  CC )
1413anim1i 552 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  K  =/=  0 )  -> 
( K  e.  CC  /\  K  =/=  0 ) )
15 mulass 9004 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  M  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  M
)  x.  K )  =  ( x  x.  ( M  x.  K
) ) )
16153expa 1153 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  K  e.  CC )  ->  ( ( x  x.  M )  x.  K )  =  ( x  x.  ( M  x.  K ) ) )
1716adantrr 698 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  ( K  e.  CC  /\  K  =/=  0 ) )  -> 
( ( x  x.  M )  x.  K
)  =  ( x  x.  ( M  x.  K ) ) )
18173adant2 976 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
x  x.  M )  x.  K )  =  ( x  x.  ( M  x.  K )
) )
1918eqeq1d 2388 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
( x  x.  M
)  x.  K )  =  ( N  x.  K )  <->  ( x  x.  ( M  x.  K
) )  =  ( N  x.  K ) ) )
20 mulcl 9000 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  M  e.  CC )  ->  ( x  x.  M
)  e.  CC )
21 mulcan2 9585 . . . . . . . . . . . . 13  |-  ( ( ( x  x.  M
)  e.  CC  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  -> 
( ( ( x  x.  M )  x.  K )  =  ( N  x.  K )  <-> 
( x  x.  M
)  =  N ) )
2220, 21syl3an1 1217 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
( x  x.  M
)  x.  K )  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
2319, 22bitr3d 247 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  M  e.  CC )  /\  N  e.  CC  /\  ( K  e.  CC  /\  K  =/=  0 ) )  ->  ( (
x  x.  ( M  x.  K ) )  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
2411, 12, 14, 23syl3an 1226 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  M  e.  ZZ )  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( (
x  x.  ( M  x.  K ) )  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
25243expb 1154 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  M  e.  ZZ )  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  ( ( x  x.  ( M  x.  K ) )  =  ( N  x.  K
)  <->  ( x  x.  M )  =  N ) )
26253impa 1148 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  ( ( x  x.  ( M  x.  K ) )  =  ( N  x.  K
)  <->  ( x  x.  M )  =  N ) )
27263coml 1160 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
28273expia 1155 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) ) )  ->  (
x  e.  ZZ  ->  ( ( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) ) )
29283impb 1149 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( x  e.  ZZ  ->  ( ( x  x.  ( M  x.  K
) )  =  ( N  x.  K )  <-> 
( x  x.  M
)  =  N ) ) )
3029imp 419 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  <->  ( x  x.  M )  =  N ) )
3130biimpd 199 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  /\  x  e.  ZZ )  ->  (
( x  x.  ( M  x.  K )
)  =  ( N  x.  K )  -> 
( x  x.  M
)  =  N ) )
326, 7, 8, 31dvds1lem 12781 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  ->  M  ||  N ) )
33 dvdsmulc 12797 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K
) ) )
34333adant3r 1181 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( M  ||  N  ->  ( M  x.  K
)  ||  ( N  x.  K ) ) )
3532, 34impbid 184 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  -> 
( ( M  x.  K )  ||  ( N  x.  K )  <->  M 
||  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   class class class wbr 4146  (class class class)co 6013   CCcc 8914   0cc0 8916    x. cmul 8921   ZZcz 10207    || cdivides 12772
This theorem is referenced by:  mulgcddvds  13024  prmpwdvds  13192  4sqlem10  13235  sylow3lem4  15184  odadd1  15383  odadd2  15384  ablfacrp2  15545  ablfac1eu  15551  fsumdvdsdiaglem  20828  nn0prpwlem  26009  jm2.20nn  26752
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-n0 10147  df-z 10208  df-dvds 12773
  Copyright terms: Public domain W3C validator