MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulf1o Unicode version

Theorem dvdsmulf1o 20434
Description: If  M and  N are two coprime integers, multiplication forms a bijection from the set of pairs  <. j ,  k >. where  j  ||  M and  k  ||  N, to the set of divisors of  M  x.  N. (Contributed by Mario Carneiro, 2-Jul-2015.)
Hypotheses
Ref Expression
dvdsmulf1o.1  |-  ( ph  ->  M  e.  NN )
dvdsmulf1o.2  |-  ( ph  ->  N  e.  NN )
dvdsmulf1o.3  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
dvdsmulf1o.x  |-  X  =  { x  e.  NN  |  x  ||  M }
dvdsmulf1o.y  |-  Y  =  { x  e.  NN  |  x  ||  N }
dvdsmulf1o.z  |-  Z  =  { x  e.  NN  |  x  ||  ( M  x.  N ) }
Assertion
Ref Expression
dvdsmulf1o  |-  ( ph  ->  (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -1-1-onto-> Z )
Distinct variable groups:    x, M    x, N
Allowed substitution hints:    ph( x)    X( x)    Y( x)    Z( x)

Proof of Theorem dvdsmulf1o
Dummy variables  i  u  j  m  n  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-mulf 8817 . . . . . . 7  |-  x.  :
( CC  X.  CC )
--> CC
2 ffn 5389 . . . . . . 7  |-  (  x.  : ( CC  X.  CC ) --> CC  ->  x.  Fn  ( CC  X.  CC ) )
31, 2ax-mp 8 . . . . . 6  |-  x.  Fn  ( CC  X.  CC )
4 dvdsmulf1o.x . . . . . . . . 9  |-  X  =  { x  e.  NN  |  x  ||  M }
5 ssrab2 3258 . . . . . . . . 9  |-  { x  e.  NN  |  x  ||  M }  C_  NN
64, 5eqsstri 3208 . . . . . . . 8  |-  X  C_  NN
7 nnsscn 9751 . . . . . . . 8  |-  NN  C_  CC
86, 7sstri 3188 . . . . . . 7  |-  X  C_  CC
9 dvdsmulf1o.y . . . . . . . . 9  |-  Y  =  { x  e.  NN  |  x  ||  N }
10 ssrab2 3258 . . . . . . . . 9  |-  { x  e.  NN  |  x  ||  N }  C_  NN
119, 10eqsstri 3208 . . . . . . . 8  |-  Y  C_  NN
1211, 7sstri 3188 . . . . . . 7  |-  Y  C_  CC
13 xpss12 4792 . . . . . . 7  |-  ( ( X  C_  CC  /\  Y  C_  CC )  ->  ( X  X.  Y )  C_  ( CC  X.  CC ) )
148, 12, 13mp2an 653 . . . . . 6  |-  ( X  X.  Y )  C_  ( CC  X.  CC )
15 fnssres 5357 . . . . . 6  |-  ( (  x.  Fn  ( CC 
X.  CC )  /\  ( X  X.  Y
)  C_  ( CC  X.  CC ) )  -> 
(  x.  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
163, 14, 15mp2an 653 . . . . 5  |-  (  x.  |`  ( X  X.  Y
) )  Fn  ( X  X.  Y )
1716a1i 10 . . . 4  |-  ( ph  ->  (  x.  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y ) )
18 ovres 5987 . . . . . . 7  |-  ( ( i  e.  X  /\  j  e.  Y )  ->  ( i (  x.  |`  ( X  X.  Y
) ) j )  =  ( i  x.  j ) )
1918adantl 452 . . . . . 6  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( i (  x.  |`  ( X  X.  Y
) ) j )  =  ( i  x.  j ) )
20 breq1 4026 . . . . . . . . . . 11  |-  ( x  =  i  ->  (
x  ||  M  <->  i  ||  M ) )
2120, 4elrab2 2925 . . . . . . . . . 10  |-  ( i  e.  X  <->  ( i  e.  NN  /\  i  ||  M ) )
2221simplbi 446 . . . . . . . . 9  |-  ( i  e.  X  ->  i  e.  NN )
2322ad2antrl 708 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
i  e.  NN )
24 breq1 4026 . . . . . . . . . . 11  |-  ( x  =  j  ->  (
x  ||  N  <->  j  ||  N ) )
2524, 9elrab2 2925 . . . . . . . . . 10  |-  ( j  e.  Y  <->  ( j  e.  NN  /\  j  ||  N ) )
2625simplbi 446 . . . . . . . . 9  |-  ( j  e.  Y  ->  j  e.  NN )
2726ad2antll 709 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
j  e.  NN )
2823, 27nnmulcld 9793 . . . . . . 7  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( i  x.  j
)  e.  NN )
2925simprbi 450 . . . . . . . . 9  |-  ( j  e.  Y  ->  j  ||  N )
3029ad2antll 709 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
j  ||  N )
3121simprbi 450 . . . . . . . . 9  |-  ( i  e.  X  ->  i  ||  M )
3231ad2antrl 708 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
i  ||  M )
3327nnzd 10116 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
j  e.  ZZ )
34 dvdsmulf1o.2 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
3534adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  ->  N  e.  NN )
3635nnzd 10116 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  ->  N  e.  ZZ )
3723nnzd 10116 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
i  e.  ZZ )
38 dvdscmul 12555 . . . . . . . . . 10  |-  ( ( j  e.  ZZ  /\  N  e.  ZZ  /\  i  e.  ZZ )  ->  (
j  ||  N  ->  ( i  x.  j ) 
||  ( i  x.  N ) ) )
3933, 36, 37, 38syl3anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( j  ||  N  ->  ( i  x.  j
)  ||  ( i  x.  N ) ) )
40 dvdsmulf1o.1 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  NN )
4140adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  ->  M  e.  NN )
4241nnzd 10116 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  ->  M  e.  ZZ )
43 dvdsmulc 12556 . . . . . . . . . 10  |-  ( ( i  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
i  ||  M  ->  ( i  x.  N ) 
||  ( M  x.  N ) ) )
4437, 42, 36, 43syl3anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( i  ||  M  ->  ( i  x.  N
)  ||  ( M  x.  N ) ) )
4528nnzd 10116 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( i  x.  j
)  e.  ZZ )
4637, 36zmulcld 10123 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( i  x.  N
)  e.  ZZ )
4742, 36zmulcld 10123 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( M  x.  N
)  e.  ZZ )
48 dvdstr 12562 . . . . . . . . . 10  |-  ( ( ( i  x.  j
)  e.  ZZ  /\  ( i  x.  N
)  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( ( ( i  x.  j ) 
||  ( i  x.  N )  /\  (
i  x.  N ) 
||  ( M  x.  N ) )  -> 
( i  x.  j
)  ||  ( M  x.  N ) ) )
4945, 46, 47, 48syl3anc 1182 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( ( ( i  x.  j )  ||  ( i  x.  N
)  /\  ( i  x.  N )  ||  ( M  x.  N )
)  ->  ( i  x.  j )  ||  ( M  x.  N )
) )
5039, 44, 49syl2and 469 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( ( j  ||  N  /\  i  ||  M
)  ->  ( i  x.  j )  ||  ( M  x.  N )
) )
5130, 32, 50mp2and 660 . . . . . . 7  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( i  x.  j
)  ||  ( M  x.  N ) )
52 breq1 4026 . . . . . . . 8  |-  ( x  =  ( i  x.  j )  ->  (
x  ||  ( M  x.  N )  <->  ( i  x.  j )  ||  ( M  x.  N )
) )
53 dvdsmulf1o.z . . . . . . . 8  |-  Z  =  { x  e.  NN  |  x  ||  ( M  x.  N ) }
5452, 53elrab2 2925 . . . . . . 7  |-  ( ( i  x.  j )  e.  Z  <->  ( (
i  x.  j )  e.  NN  /\  (
i  x.  j ) 
||  ( M  x.  N ) ) )
5528, 51, 54sylanbrc 645 . . . . . 6  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( i  x.  j
)  e.  Z )
5619, 55eqeltrd 2357 . . . . 5  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  -> 
( i (  x.  |`  ( X  X.  Y
) ) j )  e.  Z )
5756ralrimivva 2635 . . . 4  |-  ( ph  ->  A. i  e.  X  A. j  e.  Y  ( i (  x.  |`  ( X  X.  Y
) ) j )  e.  Z )
58 ffnov 5948 . . . 4  |-  ( (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y
) --> Z  <->  ( (  x.  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  /\  A. i  e.  X  A. j  e.  Y  ( i
(  x.  |`  ( X  X.  Y ) ) j )  e.  Z
) )
5917, 57, 58sylanbrc 645 . . 3  |-  ( ph  ->  (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y ) --> Z )
6023adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  i  e.  NN )
6160nnnn0d 10018 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  i  e.  NN0 )
62 simprll 738 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  m  e.  X )
63 breq1 4026 . . . . . . . . . . . . 13  |-  ( x  =  m  ->  (
x  ||  M  <->  m  ||  M
) )
6463, 4elrab2 2925 . . . . . . . . . . . 12  |-  ( m  e.  X  <->  ( m  e.  NN  /\  m  ||  M ) )
6564simplbi 446 . . . . . . . . . . 11  |-  ( m  e.  X  ->  m  e.  NN )
6662, 65syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  m  e.  NN )
6766nnnn0d 10018 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  m  e.  NN0 )
6860nnzd 10116 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  i  e.  ZZ )
6927adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  j  e.  NN )
7069nnzd 10116 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  j  e.  ZZ )
71 dvdsmul1 12550 . . . . . . . . . . . 12  |-  ( ( i  e.  ZZ  /\  j  e.  ZZ )  ->  i  ||  ( i  x.  j ) )
7268, 70, 71syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  i  ||  ( i  x.  j
) )
73 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( i  x.  j )  =  ( m  x.  n ) )
748, 62sseldi 3178 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  m  e.  CC )
75 simprlr 739 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  n  e.  Y )
76 breq1 4026 . . . . . . . . . . . . . . . . 17  |-  ( x  =  n  ->  (
x  ||  N  <->  n  ||  N
) )
7776, 9elrab2 2925 . . . . . . . . . . . . . . . 16  |-  ( n  e.  Y  <->  ( n  e.  NN  /\  n  ||  N ) )
7877simplbi 446 . . . . . . . . . . . . . . 15  |-  ( n  e.  Y  ->  n  e.  NN )
7975, 78syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  n  e.  NN )
8079nncnd 9762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  n  e.  CC )
8174, 80mulcomd 8856 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( m  x.  n )  =  ( n  x.  m ) )
8273, 81eqtrd 2315 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( i  x.  j )  =  ( n  x.  m ) )
8372, 82breqtrd 4047 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  i  ||  ( n  x.  m
) )
8479nnzd 10116 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  n  e.  ZZ )
8536adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  N  e.  ZZ )
86 gcdcom 12699 . . . . . . . . . . . . 13  |-  ( ( i  e.  ZZ  /\  N  e.  ZZ )  ->  ( i  gcd  N
)  =  ( N  gcd  i ) )
8768, 85, 86syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( i  gcd  N )  =  ( N  gcd  i ) )
8842adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  M  e.  ZZ )
8934nnzd 10116 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  ZZ )
9040nnzd 10116 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  ZZ )
91 gcdcom 12699 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
9289, 90, 91syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
93 dvdsmulf1o.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
9492, 93eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  gcd  M
)  =  1 )
9594ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( N  gcd  M )  =  1 )
9632adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  i  ||  M )
97 rpdvds 12803 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  ZZ  /\  i  e.  ZZ  /\  M  e.  ZZ )  /\  ( ( N  gcd  M )  =  1  /\  i  ||  M ) )  ->  ( N  gcd  i )  =  1 )
9885, 68, 88, 95, 96, 97syl32anc 1190 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( N  gcd  i )  =  1 )
9987, 98eqtrd 2315 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( i  gcd  N )  =  1 )
10077simprbi 450 . . . . . . . . . . . 12  |-  ( n  e.  Y  ->  n  ||  N )
10175, 100syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  n  ||  N
)
102 rpdvds 12803 . . . . . . . . . . 11  |-  ( ( ( i  e.  ZZ  /\  n  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( i  gcd 
N )  =  1  /\  n  ||  N
) )  ->  (
i  gcd  n )  =  1 )
10368, 84, 85, 99, 101, 102syl32anc 1190 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( i  gcd  n )  =  1 )
10466nnzd 10116 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  m  e.  ZZ )
105 coprmdvds 12781 . . . . . . . . . . 11  |-  ( ( i  e.  ZZ  /\  n  e.  ZZ  /\  m  e.  ZZ )  ->  (
( i  ||  (
n  x.  m )  /\  ( i  gcd  n )  =  1 )  ->  i  ||  m ) )
10668, 84, 104, 105syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( (
i  ||  ( n  x.  m )  /\  (
i  gcd  n )  =  1 )  -> 
i  ||  m )
)
10783, 103, 106mp2and 660 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  i  ||  m )
108 dvdsmul1 12550 . . . . . . . . . . . 12  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  m  ||  ( m  x.  n ) )
109104, 84, 108syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  m  ||  (
m  x.  n ) )
11060nncnd 9762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  i  e.  CC )
11169nncnd 9762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  j  e.  CC )
112110, 111mulcomd 8856 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( i  x.  j )  =  ( j  x.  i ) )
11373, 112eqtr3d 2317 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( m  x.  n )  =  ( j  x.  i ) )
114109, 113breqtrd 4047 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  m  ||  (
j  x.  i ) )
115 gcdcom 12699 . . . . . . . . . . . . 13  |-  ( ( m  e.  ZZ  /\  N  e.  ZZ )  ->  ( m  gcd  N
)  =  ( N  gcd  m ) )
116104, 85, 115syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( m  gcd  N )  =  ( N  gcd  m ) )
11764simprbi 450 . . . . . . . . . . . . . 14  |-  ( m  e.  X  ->  m  ||  M )
11862, 117syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  m  ||  M
)
119 rpdvds 12803 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  ZZ  /\  m  e.  ZZ  /\  M  e.  ZZ )  /\  ( ( N  gcd  M )  =  1  /\  m  ||  M ) )  ->  ( N  gcd  m )  =  1 )
12085, 104, 88, 95, 118, 119syl32anc 1190 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( N  gcd  m )  =  1 )
121116, 120eqtrd 2315 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( m  gcd  N )  =  1 )
12230adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  j  ||  N )
123 rpdvds 12803 . . . . . . . . . . 11  |-  ( ( ( m  e.  ZZ  /\  j  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( m  gcd  N )  =  1  /\  j  ||  N ) )  ->  ( m  gcd  j )  =  1 )
124104, 70, 85, 121, 122, 123syl32anc 1190 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( m  gcd  j )  =  1 )
125 coprmdvds 12781 . . . . . . . . . . 11  |-  ( ( m  e.  ZZ  /\  j  e.  ZZ  /\  i  e.  ZZ )  ->  (
( m  ||  (
j  x.  i )  /\  ( m  gcd  j )  =  1 )  ->  m  ||  i
) )
126104, 70, 68, 125syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( (
m  ||  ( j  x.  i )  /\  (
m  gcd  j )  =  1 )  ->  m  ||  i ) )
127114, 124, 126mp2and 660 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  m  ||  i
)
128 dvdseq 12576 . . . . . . . . 9  |-  ( ( ( i  e.  NN0  /\  m  e.  NN0 )  /\  ( i  ||  m  /\  m  ||  i ) )  ->  i  =  m )
12961, 67, 107, 127, 128syl22anc 1183 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  i  =  m )
130129oveq1d 5873 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( i  x.  n )  =  ( m  x.  n ) )
13173, 130eqtr4d 2318 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( i  x.  j )  =  ( i  x.  n ) )
13260nnne0d 9790 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  i  =/=  0 )
133111, 80, 110, 132mulcand 9401 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  ( (
i  x.  j )  =  ( i  x.  n )  <->  j  =  n ) )
134131, 133mpbid 201 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  j  =  n )
135129, 134opeq12d 3804 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( (
m  e.  X  /\  n  e.  Y )  /\  ( i  x.  j
)  =  ( m  x.  n ) ) )  ->  <. i ,  j >.  =  <. m ,  n >. )
136135expr 598 . . . . . 6  |-  ( ( ( ph  /\  (
i  e.  X  /\  j  e.  Y )
)  /\  ( m  e.  X  /\  n  e.  Y ) )  -> 
( ( i  x.  j )  =  ( m  x.  n )  ->  <. i ,  j
>.  =  <. m ,  n >. ) )
137136ralrimivva 2635 . . . . 5  |-  ( (
ph  /\  ( i  e.  X  /\  j  e.  Y ) )  ->  A. m  e.  X  A. n  e.  Y  ( ( i  x.  j )  =  ( m  x.  n )  ->  <. i ,  j
>.  =  <. m ,  n >. ) )
138137ralrimivva 2635 . . . 4  |-  ( ph  ->  A. i  e.  X  A. j  e.  Y  A. m  e.  X  A. n  e.  Y  ( ( i  x.  j )  =  ( m  x.  n )  ->  <. i ,  j
>.  =  <. m ,  n >. ) )
139 fvres 5542 . . . . . . . . 9  |-  ( u  e.  ( X  X.  Y )  ->  (
(  x.  |`  ( X  X.  Y ) ) `
 u )  =  (  x.  `  u
) )
140 fvres 5542 . . . . . . . . 9  |-  ( v  e.  ( X  X.  Y )  ->  (
(  x.  |`  ( X  X.  Y ) ) `
 v )  =  (  x.  `  v
) )
141139, 140eqeqan12d 2298 . . . . . . . 8  |-  ( ( u  e.  ( X  X.  Y )  /\  v  e.  ( X  X.  Y ) )  -> 
( ( (  x.  |`  ( X  X.  Y
) ) `  u
)  =  ( (  x.  |`  ( X  X.  Y ) ) `  v )  <->  (  x.  `  u )  =  (  x.  `  v ) ) )
142141imbi1d 308 . . . . . . 7  |-  ( ( u  e.  ( X  X.  Y )  /\  v  e.  ( X  X.  Y ) )  -> 
( ( ( (  x.  |`  ( X  X.  Y ) ) `  u )  =  ( (  x.  |`  ( X  X.  Y ) ) `
 v )  ->  u  =  v )  <->  ( (  x.  `  u
)  =  (  x. 
`  v )  ->  u  =  v )
) )
143142ralbidva 2559 . . . . . 6  |-  ( u  e.  ( X  X.  Y )  ->  ( A. v  e.  ( X  X.  Y ) ( ( (  x.  |`  ( X  X.  Y ) ) `
 u )  =  ( (  x.  |`  ( X  X.  Y ) ) `
 v )  ->  u  =  v )  <->  A. v  e.  ( X  X.  Y ) ( (  x.  `  u
)  =  (  x. 
`  v )  ->  u  =  v )
) )
144143ralbiia 2575 . . . . 5  |-  ( A. u  e.  ( X  X.  Y ) A. v  e.  ( X  X.  Y
) ( ( (  x.  |`  ( X  X.  Y ) ) `  u )  =  ( (  x.  |`  ( X  X.  Y ) ) `
 v )  ->  u  =  v )  <->  A. u  e.  ( X  X.  Y ) A. v  e.  ( X  X.  Y ) ( (  x.  `  u )  =  (  x.  `  v )  ->  u  =  v ) )
145 fveq2 5525 . . . . . . . . . . 11  |-  ( v  =  <. m ,  n >.  ->  (  x.  `  v )  =  (  x.  `  <. m ,  n >. ) )
146 df-ov 5861 . . . . . . . . . . 11  |-  ( m  x.  n )  =  (  x.  `  <. m ,  n >. )
147145, 146syl6eqr 2333 . . . . . . . . . 10  |-  ( v  =  <. m ,  n >.  ->  (  x.  `  v )  =  ( m  x.  n ) )
148147eqeq2d 2294 . . . . . . . . 9  |-  ( v  =  <. m ,  n >.  ->  ( (  x. 
`  u )  =  (  x.  `  v
)  <->  (  x.  `  u )  =  ( m  x.  n ) ) )
149 eqeq2 2292 . . . . . . . . 9  |-  ( v  =  <. m ,  n >.  ->  ( u  =  v  <->  u  =  <. m ,  n >. )
)
150148, 149imbi12d 311 . . . . . . . 8  |-  ( v  =  <. m ,  n >.  ->  ( ( (  x.  `  u )  =  (  x.  `  v )  ->  u  =  v )  <->  ( (  x.  `  u )  =  ( m  x.  n
)  ->  u  =  <. m ,  n >. ) ) )
151150ralxp 4827 . . . . . . 7  |-  ( A. v  e.  ( X  X.  Y ) ( (  x.  `  u )  =  (  x.  `  v )  ->  u  =  v )  <->  A. m  e.  X  A. n  e.  Y  ( (  x.  `  u )  =  ( m  x.  n
)  ->  u  =  <. m ,  n >. ) )
152 fveq2 5525 . . . . . . . . . . 11  |-  ( u  =  <. i ,  j
>.  ->  (  x.  `  u )  =  (  x.  `  <. i ,  j >. )
)
153 df-ov 5861 . . . . . . . . . . 11  |-  ( i  x.  j )  =  (  x.  `  <. i ,  j >. )
154152, 153syl6eqr 2333 . . . . . . . . . 10  |-  ( u  =  <. i ,  j
>.  ->  (  x.  `  u )  =  ( i  x.  j ) )
155154eqeq1d 2291 . . . . . . . . 9  |-  ( u  =  <. i ,  j
>.  ->  ( (  x. 
`  u )  =  ( m  x.  n
)  <->  ( i  x.  j )  =  ( m  x.  n ) ) )
156 eqeq1 2289 . . . . . . . . 9  |-  ( u  =  <. i ,  j
>.  ->  ( u  = 
<. m ,  n >.  <->  <. i ,  j >.  =  <. m ,  n >. )
)
157155, 156imbi12d 311 . . . . . . . 8  |-  ( u  =  <. i ,  j
>.  ->  ( ( (  x.  `  u )  =  ( m  x.  n )  ->  u  =  <. m ,  n >. )  <->  ( ( i  x.  j )  =  ( m  x.  n
)  ->  <. i ,  j >.  =  <. m ,  n >. )
) )
1581572ralbidv 2585 . . . . . . 7  |-  ( u  =  <. i ,  j
>.  ->  ( A. m  e.  X  A. n  e.  Y  ( (  x.  `  u )  =  ( m  x.  n
)  ->  u  =  <. m ,  n >. )  <->  A. m  e.  X  A. n  e.  Y  ( ( i  x.  j )  =  ( m  x.  n )  ->  <. i ,  j
>.  =  <. m ,  n >. ) ) )
159151, 158syl5bb 248 . . . . . 6  |-  ( u  =  <. i ,  j
>.  ->  ( A. v  e.  ( X  X.  Y
) ( (  x. 
`  u )  =  (  x.  `  v
)  ->  u  =  v )  <->  A. m  e.  X  A. n  e.  Y  ( (
i  x.  j )  =  ( m  x.  n )  ->  <. i ,  j >.  =  <. m ,  n >. )
) )
160159ralxp 4827 . . . . 5  |-  ( A. u  e.  ( X  X.  Y ) A. v  e.  ( X  X.  Y
) ( (  x. 
`  u )  =  (  x.  `  v
)  ->  u  =  v )  <->  A. i  e.  X  A. j  e.  Y  A. m  e.  X  A. n  e.  Y  ( (
i  x.  j )  =  ( m  x.  n )  ->  <. i ,  j >.  =  <. m ,  n >. )
)
161144, 160bitri 240 . . . 4  |-  ( A. u  e.  ( X  X.  Y ) A. v  e.  ( X  X.  Y
) ( ( (  x.  |`  ( X  X.  Y ) ) `  u )  =  ( (  x.  |`  ( X  X.  Y ) ) `
 v )  ->  u  =  v )  <->  A. i  e.  X  A. j  e.  Y  A. m  e.  X  A. n  e.  Y  (
( i  x.  j
)  =  ( m  x.  n )  ->  <. i ,  j >.  =  <. m ,  n >. ) )
162138, 161sylibr 203 . . 3  |-  ( ph  ->  A. u  e.  ( X  X.  Y ) A. v  e.  ( X  X.  Y ) ( ( (  x.  |`  ( X  X.  Y
) ) `  u
)  =  ( (  x.  |`  ( X  X.  Y ) ) `  v )  ->  u  =  v ) )
163 dff13 5783 . . 3  |-  ( (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y
) -1-1-> Z  <->  ( (  x.  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Z  /\  A. u  e.  ( X  X.  Y
) A. v  e.  ( X  X.  Y
) ( ( (  x.  |`  ( X  X.  Y ) ) `  u )  =  ( (  x.  |`  ( X  X.  Y ) ) `
 v )  ->  u  =  v )
) )
16459, 162, 163sylanbrc 645 . 2  |-  ( ph  ->  (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -1-1-> Z )
165 breq1 4026 . . . . . . . . . . . 12  |-  ( x  =  w  ->  (
x  ||  ( M  x.  N )  <->  w  ||  ( M  x.  N )
) )
166165, 53elrab2 2925 . . . . . . . . . . 11  |-  ( w  e.  Z  <->  ( w  e.  NN  /\  w  ||  ( M  x.  N
) ) )
167166simplbi 446 . . . . . . . . . 10  |-  ( w  e.  Z  ->  w  e.  NN )
168167adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  Z )  ->  w  e.  NN )
169168nnzd 10116 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Z )  ->  w  e.  ZZ )
17040adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  Z )  ->  M  e.  NN )
171170nnzd 10116 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Z )  ->  M  e.  ZZ )
172170nnne0d 9790 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  Z )  ->  M  =/=  0 )
173 simpr 447 . . . . . . . . . 10  |-  ( ( w  =  0  /\  M  =  0 )  ->  M  =  0 )
174173necon3ai 2486 . . . . . . . . 9  |-  ( M  =/=  0  ->  -.  ( w  =  0  /\  M  =  0
) )
175172, 174syl 15 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Z )  ->  -.  ( w  =  0  /\  M  =  0
) )
176 gcdn0cl 12693 . . . . . . . 8  |-  ( ( ( w  e.  ZZ  /\  M  e.  ZZ )  /\  -.  ( w  =  0  /\  M  =  0 ) )  ->  ( w  gcd  M )  e.  NN )
177169, 171, 175, 176syl21anc 1181 . . . . . . 7  |-  ( (
ph  /\  w  e.  Z )  ->  (
w  gcd  M )  e.  NN )
178 gcddvds 12694 . . . . . . . . 9  |-  ( ( w  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( w  gcd  M )  ||  w  /\  ( w  gcd  M ) 
||  M ) )
179169, 171, 178syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Z )  ->  (
( w  gcd  M
)  ||  w  /\  ( w  gcd  M ) 
||  M ) )
180179simprd 449 . . . . . . 7  |-  ( (
ph  /\  w  e.  Z )  ->  (
w  gcd  M )  ||  M )
181 breq1 4026 . . . . . . . 8  |-  ( x  =  ( w  gcd  M )  ->  ( x  ||  M  <->  ( w  gcd  M )  ||  M ) )
182181, 4elrab2 2925 . . . . . . 7  |-  ( ( w  gcd  M )  e.  X  <->  ( (
w  gcd  M )  e.  NN  /\  ( w  gcd  M )  ||  M ) )
183177, 180, 182sylanbrc 645 . . . . . 6  |-  ( (
ph  /\  w  e.  Z )  ->  (
w  gcd  M )  e.  X )
18434adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  Z )  ->  N  e.  NN )
185184nnzd 10116 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Z )  ->  N  e.  ZZ )
186184nnne0d 9790 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  Z )  ->  N  =/=  0 )
187 simpr 447 . . . . . . . . . 10  |-  ( ( w  =  0  /\  N  =  0 )  ->  N  =  0 )
188187necon3ai 2486 . . . . . . . . 9  |-  ( N  =/=  0  ->  -.  ( w  =  0  /\  N  =  0
) )
189186, 188syl 15 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Z )  ->  -.  ( w  =  0  /\  N  =  0
) )
190 gcdn0cl 12693 . . . . . . . 8  |-  ( ( ( w  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( w  =  0  /\  N  =  0 ) )  ->  ( w  gcd  N )  e.  NN )
191169, 185, 189, 190syl21anc 1181 . . . . . . 7  |-  ( (
ph  /\  w  e.  Z )  ->  (
w  gcd  N )  e.  NN )
192 gcddvds 12694 . . . . . . . . 9  |-  ( ( w  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( w  gcd  N )  ||  w  /\  ( w  gcd  N ) 
||  N ) )
193169, 185, 192syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Z )  ->  (
( w  gcd  N
)  ||  w  /\  ( w  gcd  N ) 
||  N ) )
194193simprd 449 . . . . . . 7  |-  ( (
ph  /\  w  e.  Z )  ->  (
w  gcd  N )  ||  N )
195 breq1 4026 . . . . . . . 8  |-  ( x  =  ( w  gcd  N )  ->  ( x  ||  N  <->  ( w  gcd  N )  ||  N ) )
196195, 9elrab2 2925 . . . . . . 7  |-  ( ( w  gcd  N )  e.  Y  <->  ( (
w  gcd  N )  e.  NN  /\  ( w  gcd  N )  ||  N ) )
197191, 194, 196sylanbrc 645 . . . . . 6  |-  ( (
ph  /\  w  e.  Z )  ->  (
w  gcd  N )  e.  Y )
198 opelxpi 4721 . . . . . 6  |-  ( ( ( w  gcd  M
)  e.  X  /\  ( w  gcd  N )  e.  Y )  ->  <. ( w  gcd  M
) ,  ( w  gcd  N ) >.  e.  ( X  X.  Y
) )
199183, 197, 198syl2anc 642 . . . . 5  |-  ( (
ph  /\  w  e.  Z )  ->  <. (
w  gcd  M ) ,  ( w  gcd  N ) >.  e.  ( X  X.  Y ) )
200 fvres 5542 . . . . . . 7  |-  ( <.
( w  gcd  M
) ,  ( w  gcd  N ) >.  e.  ( X  X.  Y
)  ->  ( (  x.  |`  ( X  X.  Y ) ) `  <. ( w  gcd  M
) ,  ( w  gcd  N ) >.
)  =  (  x. 
`  <. ( w  gcd  M ) ,  ( w  gcd  N ) >.
) )
201199, 200syl 15 . . . . . 6  |-  ( (
ph  /\  w  e.  Z )  ->  (
(  x.  |`  ( X  X.  Y ) ) `
 <. ( w  gcd  M ) ,  ( w  gcd  N ) >.
)  =  (  x. 
`  <. ( w  gcd  M ) ,  ( w  gcd  N ) >.
) )
20293adantr 451 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Z )  ->  ( M  gcd  N )  =  1 )
203 rpmulgcd2 12784 . . . . . . . 8  |-  ( ( ( w  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  gcd  N
)  =  1 )  ->  ( w  gcd  ( M  x.  N
) )  =  ( ( w  gcd  M
)  x.  ( w  gcd  N ) ) )
204169, 171, 185, 202, 203syl31anc 1185 . . . . . . 7  |-  ( (
ph  /\  w  e.  Z )  ->  (
w  gcd  ( M  x.  N ) )  =  ( ( w  gcd  M )  x.  ( w  gcd  N ) ) )
205 df-ov 5861 . . . . . . 7  |-  ( ( w  gcd  M )  x.  ( w  gcd  N ) )  =  (  x.  `  <. (
w  gcd  M ) ,  ( w  gcd  N ) >. )
206204, 205syl6eq 2331 . . . . . 6  |-  ( (
ph  /\  w  e.  Z )  ->  (
w  gcd  ( M  x.  N ) )  =  (  x.  `  <. ( w  gcd  M ) ,  ( w  gcd  N ) >. ) )
207166simprbi 450 . . . . . . . 8  |-  ( w  e.  Z  ->  w  ||  ( M  x.  N
) )
208207adantl 452 . . . . . . 7  |-  ( (
ph  /\  w  e.  Z )  ->  w  ||  ( M  x.  N
) )
20940, 34nnmulcld 9793 . . . . . . . 8  |-  ( ph  ->  ( M  x.  N
)  e.  NN )
210 gcdeq 12731 . . . . . . . 8  |-  ( ( w  e.  NN  /\  ( M  x.  N
)  e.  NN )  ->  ( ( w  gcd  ( M  x.  N ) )  =  w  <->  w  ||  ( M  x.  N ) ) )
211167, 209, 210syl2anr 464 . . . . . . 7  |-  ( (
ph  /\  w  e.  Z )  ->  (
( w  gcd  ( M  x.  N )
)  =  w  <->  w  ||  ( M  x.  N )
) )
212208, 211mpbird 223 . . . . . 6  |-  ( (
ph  /\  w  e.  Z )  ->  (
w  gcd  ( M  x.  N ) )  =  w )
213201, 206, 2123eqtr2rd 2322 . . . . 5  |-  ( (
ph  /\  w  e.  Z )  ->  w  =  ( (  x.  |`  ( X  X.  Y
) ) `  <. ( w  gcd  M ) ,  ( w  gcd  N ) >. ) )
214 fveq2 5525 . . . . . . 7  |-  ( u  =  <. ( w  gcd  M ) ,  ( w  gcd  N ) >.  ->  ( (  x.  |`  ( X  X.  Y ) ) `
 u )  =  ( (  x.  |`  ( X  X.  Y ) ) `
 <. ( w  gcd  M ) ,  ( w  gcd  N ) >.
) )
215214eqeq2d 2294 . . . . . 6  |-  ( u  =  <. ( w  gcd  M ) ,  ( w  gcd  N ) >.  ->  ( w  =  ( (  x.  |`  ( X  X.  Y ) ) `
 u )  <->  w  =  ( (  x.  |`  ( X  X.  Y ) ) `
 <. ( w  gcd  M ) ,  ( w  gcd  N ) >.
) ) )
216215rspcev 2884 . . . . 5  |-  ( (
<. ( w  gcd  M
) ,  ( w  gcd  N ) >.  e.  ( X  X.  Y
)  /\  w  =  ( (  x.  |`  ( X  X.  Y ) ) `
 <. ( w  gcd  M ) ,  ( w  gcd  N ) >.
) )  ->  E. u  e.  ( X  X.  Y
) w  =  ( (  x.  |`  ( X  X.  Y ) ) `
 u ) )
217199, 213, 216syl2anc 642 . . . 4  |-  ( (
ph  /\  w  e.  Z )  ->  E. u  e.  ( X  X.  Y
) w  =  ( (  x.  |`  ( X  X.  Y ) ) `
 u ) )
218217ralrimiva 2626 . . 3  |-  ( ph  ->  A. w  e.  Z  E. u  e.  ( X  X.  Y ) w  =  ( (  x.  |`  ( X  X.  Y
) ) `  u
) )
219 dffo3 5675 . . 3  |-  ( (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y
) -onto-> Z  <->  ( (  x.  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Z  /\  A. w  e.  Z  E. u  e.  ( X  X.  Y
) w  =  ( (  x.  |`  ( X  X.  Y ) ) `
 u ) ) )
22059, 218, 219sylanbrc 645 . 2  |-  ( ph  ->  (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> Z )
221 df-f1o 5262 . 2  |-  ( (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y
)
-1-1-onto-> Z 
<->  ( (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -1-1-> Z  /\  (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> Z ) )
222164, 220, 221sylanbrc 645 1  |-  ( ph  ->  (  x.  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -1-1-onto-> Z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   <.cop 3643   class class class wbr 4023    X. cxp 4687    |` cres 4691    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    x. cmul 8742   NNcn 9746   NN0cn0 9965   ZZcz 10024    || cdivides 12531    gcd cgcd 12685
This theorem is referenced by:  fsumdvdsmul  20435
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686
  Copyright terms: Public domain W3C validator