MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsppwf1o Unicode version

Theorem dvdsppwf1o 20426
Description: A bijection from the divisors of a prime power to the integers less than the prime count. (Contributed by Mario Carneiro, 5-May-2016.)
Hypothesis
Ref Expression
dvdsppwf1o.f  |-  F  =  ( n  e.  ( 0 ... A ) 
|->  ( P ^ n
) )
Assertion
Ref Expression
dvdsppwf1o  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  F : ( 0 ... A ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ A ) } )
Distinct variable groups:    x, n, A    P, n, x
Allowed substitution hints:    F( x, n)

Proof of Theorem dvdsppwf1o
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 dvdsppwf1o.f . 2  |-  F  =  ( n  e.  ( 0 ... A ) 
|->  ( P ^ n
) )
2 prmnn 12761 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
32adantr 451 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  P  e.  NN )
4 elfznn0 10822 . . . 4  |-  ( n  e.  ( 0 ... A )  ->  n  e.  NN0 )
5 nnexpcl 11116 . . . 4  |-  ( ( P  e.  NN  /\  n  e.  NN0 )  -> 
( P ^ n
)  e.  NN )
63, 4, 5syl2an 463 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  ( P ^
n )  e.  NN )
7 prmz 12762 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  ZZ )
87ad2antrr 706 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  P  e.  ZZ )
94adantl 452 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  n  e.  NN0 )
10 elfzuz3 10795 . . . . 5  |-  ( n  e.  ( 0 ... A )  ->  A  e.  ( ZZ>= `  n )
)
1110adantl 452 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  A  e.  (
ZZ>= `  n ) )
12 dvdsexp 12584 . . . 4  |-  ( ( P  e.  ZZ  /\  n  e.  NN0  /\  A  e.  ( ZZ>= `  n )
)  ->  ( P ^ n )  ||  ( P ^ A ) )
138, 9, 11, 12syl3anc 1182 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  ( P ^
n )  ||  ( P ^ A ) )
14 breq1 4026 . . . 4  |-  ( x  =  ( P ^
n )  ->  (
x  ||  ( P ^ A )  <->  ( P ^ n )  ||  ( P ^ A ) ) )
1514elrab 2923 . . 3  |-  ( ( P ^ n )  e.  { x  e.  NN  |  x  ||  ( P ^ A ) }  <->  ( ( P ^ n )  e.  NN  /\  ( P ^ n )  ||  ( P ^ A ) ) )
166, 13, 15sylanbrc 645 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  ( P ^
n )  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } )
17 simpl 443 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  P  e.  Prime )
18 ssrab2 3258 . . . . 5  |-  { x  e.  NN  |  x  ||  ( P ^ A ) }  C_  NN
1918sseli 3176 . . . 4  |-  ( m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) }  ->  m  e.  NN )
20 pccl 12902 . . . 4  |-  ( ( P  e.  Prime  /\  m  e.  NN )  ->  ( P  pCnt  m )  e. 
NN0 )
2117, 19, 20syl2an 463 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P  pCnt  m )  e. 
NN0 )
2217adantr 451 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  P  e.  Prime )
2319adantl 452 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  m  e.  NN )
2423nnzd 10116 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  m  e.  ZZ )
257ad2antrr 706 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  P  e.  ZZ )
26 simplr 731 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  A  e.  NN0 )
27 zexpcl 11118 . . . . . 6  |-  ( ( P  e.  ZZ  /\  A  e.  NN0 )  -> 
( P ^ A
)  e.  ZZ )
2825, 26, 27syl2anc 642 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P ^ A )  e.  ZZ )
29 breq1 4026 . . . . . . . 8  |-  ( x  =  m  ->  (
x  ||  ( P ^ A )  <->  m  ||  ( P ^ A ) ) )
3029elrab 2923 . . . . . . 7  |-  ( m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) }  <->  ( m  e.  NN  /\  m  ||  ( P ^ A ) ) )
3130simprbi 450 . . . . . 6  |-  ( m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) }  ->  m  ||  ( P ^ A ) )
3231adantl 452 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  m  ||  ( P ^ A
) )
33 pcdvdstr 12928 . . . . 5  |-  ( ( P  e.  Prime  /\  (
m  e.  ZZ  /\  ( P ^ A )  e.  ZZ  /\  m  ||  ( P ^ A
) ) )  -> 
( P  pCnt  m
)  <_  ( P  pCnt  ( P ^ A
) ) )
3422, 24, 28, 32, 33syl13anc 1184 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P  pCnt  m )  <_ 
( P  pCnt  ( P ^ A ) ) )
35 pcidlem 12924 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
3635adantr 451 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
3734, 36breqtrd 4047 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P  pCnt  m )  <_  A )
38 fznn0 10851 . . . 4  |-  ( A  e.  NN0  ->  ( ( P  pCnt  m )  e.  ( 0 ... A
)  <->  ( ( P 
pCnt  m )  e.  NN0  /\  ( P  pCnt  m
)  <_  A )
) )
3926, 38syl 15 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  (
( P  pCnt  m
)  e.  ( 0 ... A )  <->  ( ( P  pCnt  m )  e. 
NN0  /\  ( P  pCnt  m )  <_  A
) ) )
4021, 37, 39mpbir2and 888 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( P  pCnt  m )  e.  ( 0 ... A
) )
41 oveq2 5866 . . . . . . . . 9  |-  ( n  =  A  ->  ( P ^ n )  =  ( P ^ A
) )
4241breq2d 4035 . . . . . . . 8  |-  ( n  =  A  ->  (
m  ||  ( P ^ n )  <->  m  ||  ( P ^ A ) ) )
4342rspcev 2884 . . . . . . 7  |-  ( ( A  e.  NN0  /\  m  ||  ( P ^ A ) )  ->  E. n  e.  NN0  m  ||  ( P ^
n ) )
4426, 32, 43syl2anc 642 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  E. n  e.  NN0  m  ||  ( P ^ n ) )
45 pcprmpw2 12934 . . . . . . 7  |-  ( ( P  e.  Prime  /\  m  e.  NN )  ->  ( E. n  e.  NN0  m  ||  ( P ^
n )  <->  m  =  ( P ^ ( P 
pCnt  m ) ) ) )
4617, 19, 45syl2an 463 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  ( E. n  e.  NN0  m  ||  ( P ^
n )  <->  m  =  ( P ^ ( P 
pCnt  m ) ) ) )
4744, 46mpbid 201 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  m  e.  { x  e.  NN  |  x  ||  ( P ^ A ) } )  ->  m  =  ( P ^
( P  pCnt  m
) ) )
4847adantrl 696 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  ( n  e.  ( 0 ... A )  /\  m  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } ) )  ->  m  =  ( P ^ ( P 
pCnt  m ) ) )
49 oveq2 5866 . . . . 5  |-  ( n  =  ( P  pCnt  m )  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  m ) ) )
5049eqeq2d 2294 . . . 4  |-  ( n  =  ( P  pCnt  m )  ->  ( m  =  ( P ^
n )  <->  m  =  ( P ^ ( P 
pCnt  m ) ) ) )
5148, 50syl5ibrcom 213 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  ( n  e.  ( 0 ... A )  /\  m  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } ) )  ->  ( n  =  ( P  pCnt  m )  ->  m  =  ( P ^ n ) ) )
52 elfzelz 10798 . . . . . . 7  |-  ( n  e.  ( 0 ... A )  ->  n  e.  ZZ )
53 pcid 12925 . . . . . . 7  |-  ( ( P  e.  Prime  /\  n  e.  ZZ )  ->  ( P  pCnt  ( P ^
n ) )  =  n )
5417, 52, 53syl2an 463 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  ( P  pCnt  ( P ^ n ) )  =  n )
5554eqcomd 2288 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  n  e.  (
0 ... A ) )  ->  n  =  ( P  pCnt  ( P ^ n ) ) )
5655adantrr 697 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  ( n  e.  ( 0 ... A )  /\  m  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } ) )  ->  n  =  ( P  pCnt  ( P ^ n ) ) )
57 oveq2 5866 . . . . 5  |-  ( m  =  ( P ^
n )  ->  ( P  pCnt  m )  =  ( P  pCnt  ( P ^ n ) ) )
5857eqeq2d 2294 . . . 4  |-  ( m  =  ( P ^
n )  ->  (
n  =  ( P 
pCnt  m )  <->  n  =  ( P  pCnt  ( P ^ n ) ) ) )
5956, 58syl5ibrcom 213 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  ( n  e.  ( 0 ... A )  /\  m  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } ) )  ->  ( m  =  ( P ^
n )  ->  n  =  ( P  pCnt  m ) ) )
6051, 59impbid 183 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  NN0 )  /\  ( n  e.  ( 0 ... A )  /\  m  e.  {
x  e.  NN  |  x  ||  ( P ^ A ) } ) )  ->  ( n  =  ( P  pCnt  m )  <->  m  =  ( P ^ n ) ) )
611, 16, 40, 60f1o2d 6069 1  |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  F : ( 0 ... A ) -1-1-onto-> { x  e.  NN  |  x  ||  ( P ^ A ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   {crab 2547   class class class wbr 4023    e. cmpt 4077   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   0cc0 8737    <_ cle 8868   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   ^cexp 11104    || cdivides 12531   Primecprime 12758    pCnt cpc 12889
This theorem is referenced by:  sgmppw  20436  0sgmppw  20437  dchrisum0flblem1  20657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890
  Copyright terms: Public domain W3C validator