MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr2 Unicode version

Theorem dvdsr2 15680
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
dvdsr.3  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvdsr2  |-  ( X  e.  B  ->  ( X  .||  Y  <->  E. z  e.  B  ( z  .x.  X )  =  Y ) )
Distinct variable groups:    z, B    z, X    z, Y    z, R    z,  .x.
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsr2
StepHypRef Expression
1 dvdsr.1 . . 3  |-  B  =  ( Base `  R
)
2 dvdsr.2 . . 3  |-  .||  =  (
||r `  R )
3 dvdsr.3 . . 3  |-  .x.  =  ( .r `  R )
41, 2, 3dvdsr 15679 . 2  |-  ( X 
.||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) )
54baib 872 1  |-  ( X  e.  B  ->  ( X  .||  Y  <->  E. z  e.  B  ( z  .x.  X )  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1717   E.wrex 2651   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   Basecbs 13397   .rcmulr 13458   ||rcdsr 15671
This theorem is referenced by:  dvdsr01  15688  dvdsr02  15689  unitgrp  15700  rspsn  16253  znunit  16768  dvdsq1p  19951  rhmdvdsr  24073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-dvdsr 15674
  Copyright terms: Public domain W3C validator