MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsr2 Structured version   Unicode version

Theorem dvdsr2 15742
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
dvdsr.3  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvdsr2  |-  ( X  e.  B  ->  ( X  .||  Y  <->  E. z  e.  B  ( z  .x.  X )  =  Y ) )
Distinct variable groups:    z, B    z, X    z, Y    z, R    z,  .x.
Allowed substitution hint:    .|| ( z)

Proof of Theorem dvdsr2
StepHypRef Expression
1 dvdsr.1 . . 3  |-  B  =  ( Base `  R
)
2 dvdsr.2 . . 3  |-  .||  =  (
||r `  R )
3 dvdsr.3 . . 3  |-  .x.  =  ( .r `  R )
41, 2, 3dvdsr 15741 . 2  |-  ( X 
.||  Y  <->  ( X  e.  B  /\  E. z  e.  B  ( z  .x.  X )  =  Y ) )
54baib 872 1  |-  ( X  e.  B  ->  ( X  .||  Y  <->  E. z  e.  B  ( z  .x.  X )  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652    e. wcel 1725   E.wrex 2698   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13459   .rcmulr 13520   ||rcdsr 15733
This theorem is referenced by:  dvdsr01  15750  dvdsr02  15751  unitgrp  15762  rspsn  16315  znunit  16834  dvdsq1p  20073  rhmdvdsr  24246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-dvdsr 15736
  Copyright terms: Public domain W3C validator