Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsrabdioph Structured version   Unicode version

Theorem dvdsrabdioph 26824
Description: Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
dvdsrabdioph  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  e.  (Dioph `  N
) )
Distinct variable group:    t, N
Allowed substitution hints:    A( t)    B( t)

Proof of Theorem dvdsrabdioph
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabdiophlem1 26815 . . . 4  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) A  e.  ZZ )
2 rabdiophlem1 26815 . . . 4  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) B  e.  ZZ )
3 divides 12844 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  E. a  e.  ZZ  (
a  x.  A )  =  B ) )
4 oveq1 6080 . . . . . . . . 9  |-  ( a  =  b  ->  (
a  x.  A )  =  ( b  x.  A ) )
54eqeq1d 2443 . . . . . . . 8  |-  ( a  =  b  ->  (
( a  x.  A
)  =  B  <->  ( b  x.  A )  =  B ) )
6 oveq1 6080 . . . . . . . . 9  |-  ( a  =  -u b  ->  (
a  x.  A )  =  ( -u b  x.  A ) )
76eqeq1d 2443 . . . . . . . 8  |-  ( a  =  -u b  ->  (
( a  x.  A
)  =  B  <->  ( -u b  x.  A )  =  B ) )
85, 7rexzrexnn0 26818 . . . . . . 7  |-  ( E. a  e.  ZZ  (
a  x.  A )  =  B  <->  E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) )
93, 8syl6bb 253 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  E. b  e.  NN0  (
( b  x.  A
)  =  B  \/  ( -u b  x.  A
)  =  B ) ) )
109ralimi 2773 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) ( A  ||  B  <->  E. b  e.  NN0  (
( b  x.  A
)  =  B  \/  ( -u b  x.  A
)  =  B ) ) )
11 r19.26 2830 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  e.  ZZ  /\  B  e.  ZZ )  <->  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) A  e.  ZZ  /\  A. t  e.  ( NN0  ^m  (
1 ... N ) ) B  e.  ZZ ) )
12 rabbi 2878 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A 
||  B  <->  E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) )  <->  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
1310, 11, 123imtr3i 257 . . . 4  |-  ( ( A. t  e.  ( NN0  ^m  ( 1 ... N ) ) A  e.  ZZ  /\  A. t  e.  ( NN0 
^m  ( 1 ... N ) ) B  e.  ZZ )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
141, 2, 13syl2an 464 . . 3  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
15143adant1 975 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
16 nfcv 2571 . . . 4  |-  F/_ t
( NN0  ^m  (
1 ... N ) )
17 nfcv 2571 . . . 4  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
18 nfv 1629 . . . 4  |-  F/ a E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B )
19 nfcv 2571 . . . . 5  |-  F/_ t NN0
20 nfcv 2571 . . . . . . . 8  |-  F/_ t
b
21 nfcv 2571 . . . . . . . 8  |-  F/_ t  x.
22 nfcsb1v 3275 . . . . . . . 8  |-  F/_ t [_ a  /  t ]_ A
2320, 21, 22nfov 6096 . . . . . . 7  |-  F/_ t
( b  x.  [_ a  /  t ]_ A
)
24 nfcsb1v 3275 . . . . . . 7  |-  F/_ t [_ a  /  t ]_ B
2523, 24nfeq 2578 . . . . . 6  |-  F/ t ( b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
26 nfcv 2571 . . . . . . . 8  |-  F/_ t -u b
2726, 21, 22nfov 6096 . . . . . . 7  |-  F/_ t
( -u b  x.  [_ a  /  t ]_ A
)
2827, 24nfeq 2578 . . . . . 6  |-  F/ t ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
2925, 28nfor 1858 . . . . 5  |-  F/ t ( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)
3019, 29nfrex 2753 . . . 4  |-  F/ t E. b  e.  NN0  ( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)
31 csbeq1a 3251 . . . . . . . 8  |-  ( t  =  a  ->  A  =  [_ a  /  t ]_ A )
3231oveq2d 6089 . . . . . . 7  |-  ( t  =  a  ->  (
b  x.  A )  =  ( b  x. 
[_ a  /  t ]_ A ) )
33 csbeq1a 3251 . . . . . . 7  |-  ( t  =  a  ->  B  =  [_ a  /  t ]_ B )
3432, 33eqeq12d 2449 . . . . . 6  |-  ( t  =  a  ->  (
( b  x.  A
)  =  B  <->  ( b  x.  [_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
) )
3531oveq2d 6089 . . . . . . 7  |-  ( t  =  a  ->  ( -u b  x.  A )  =  ( -u b  x.  [_ a  /  t ]_ A ) )
3635, 33eqeq12d 2449 . . . . . 6  |-  ( t  =  a  ->  (
( -u b  x.  A
)  =  B  <->  ( -u b  x.  [_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
) )
3734, 36orbi12d 691 . . . . 5  |-  ( t  =  a  ->  (
( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B )  <->  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) ) )
3837rexbidv 2718 . . . 4  |-  ( t  =  a  ->  ( E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B )  <->  E. b  e.  NN0  ( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
) ) )
3916, 17, 18, 30, 38cbvrab 2946 . . 3  |-  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) }  =  { a  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) }
40 simp1 957 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  N  e.  NN0 )
41 peano2nn0 10250 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
42413ad2ant1 978 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( N  +  1 )  e.  NN0 )
43 ovex 6098 . . . . . . . . . 10  |-  ( 1 ... ( N  + 
1 ) )  e. 
_V
44 nn0p1nn 10249 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
45 elfz1end 11071 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  NN  <->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
4644, 45sylib 189 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
47 mzpproj 26748 . . . . . . . . . 10  |-  ( ( ( 1 ... ( N  +  1 ) )  e.  _V  /\  ( N  +  1
)  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( c  e.  ( ZZ  ^m  (
1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
4843, 46, 47sylancr 645 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  +  1 ) ) )  |->  ( c `
 ( N  + 
1 ) ) )  e.  (mzPoly `  (
1 ... ( N  + 
1 ) ) ) )
4948adantr 452 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
50 eqid 2435 . . . . . . . . 9  |-  ( N  +  1 )  =  ( N  +  1 )
5150rabdiophlem2 26816 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
52 mzpmulmpt 26753 . . . . . . . 8  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
)  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
5349, 51, 52syl2anc 643 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
54533adant3 977 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
5550rabdiophlem2 26816 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
56553adant2 976 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
57 eqrabdioph 26790 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN0  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
)  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
5842, 54, 56, 57syl3anc 1184 . . . . 5  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
59 mzpnegmpt 26755 . . . . . . . . 9  |-  ( ( c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  ->  (
c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  -u ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
6049, 59syl 16 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  -u ( c `  ( N  +  1
) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
61 mzpmulmpt 26753 . . . . . . . 8  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  -u ( c `  ( N  +  1
) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
6260, 51, 61syl2anc 643 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
63623adant3 977 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
64 eqrabdioph 26790 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN0  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( -u (
c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
6542, 63, 56, 64syl3anc 1184 . . . . 5  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( -u (
c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
66 orrabdioph 26794 . . . . 5  |-  ( ( { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) )  /\  { c  e.  ( NN0  ^m  ( 1 ... ( N  +  1 ) ) )  |  (
-u ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
)  =  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ B }  e.  (Dioph `  ( N  + 
1 ) ) )  ->  { c  e.  ( NN0  ^m  (
1 ... ( N  + 
1 ) ) )  |  ( ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) }  e.  (Dioph `  ( N  +  1 ) ) )
6758, 65, 66syl2anc 643 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) }  e.  (Dioph `  ( N  +  1 ) ) )
68 oveq1 6080 . . . . . . 7  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
b  x.  [_ a  /  t ]_ A
)  =  ( ( c `  ( N  +  1 ) )  x.  [_ a  / 
t ]_ A ) )
6968eqeq1d 2443 . . . . . 6  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
( b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  ( ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) )
70 negeq 9288 . . . . . . . 8  |-  ( b  =  ( c `  ( N  +  1
) )  ->  -u b  =  -u ( c `  ( N  +  1
) ) )
7170oveq1d 6088 . . . . . . 7  |-  ( b  =  ( c `  ( N  +  1
) )  ->  ( -u b  x.  [_ a  /  t ]_ A
)  =  ( -u ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
) )
7271eqeq1d 2443 . . . . . 6  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  (
-u ( c `  ( N  +  1
) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) )
7369, 72orbi12d 691 . . . . 5  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)  <->  ( ( ( c `  ( N  +  1 ) )  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) ) )
74 csbeq1 3246 . . . . . . . 8  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  [_ a  /  t ]_ A  =  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )
7574oveq2d 6089 . . . . . . 7  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )
76 csbeq1 3246 . . . . . . 7  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  [_ a  /  t ]_ B  =  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )
7775, 76eqeq12d 2449 . . . . . 6  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( ( c `  ( N  +  1
) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  ( ( c `  ( N  +  1 ) )  x.  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ A )  = 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ B ) )
7874oveq2d 6089 . . . . . . 7  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  ( -u ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  ( -u ( c `  ( N  +  1 ) )  x.  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ A ) )
7978, 76eqeq12d 2449 . . . . . 6  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( -u ( c `  ( N  +  1
) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  (
-u ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
)  =  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ B ) )
8077, 79orbi12d 691 . . . . 5  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( ( ( c `
 ( N  + 
1 ) )  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)  <->  ( ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) ) )
8150, 73, 80rexrabdioph 26808 . . . 4  |-  ( ( N  e.  NN0  /\  { c  e.  ( NN0 
^m  ( 1 ... ( N  +  1 ) ) )  |  ( ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) }  e.  (Dioph `  ( N  +  1 ) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) }  e.  (Dioph `  N ) )
8240, 67, 81syl2anc 643 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) }  e.  (Dioph `  N ) )
8339, 82syl5eqel 2519 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) }  e.  (Dioph `  N ) )
8415, 83eqeltrd 2509 1  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  e.  (Dioph `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948   [_csb 3243   class class class wbr 4204    e. cmpt 4258    |` cres 4872   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   1c1 8981    + caddc 8983    x. cmul 8985   -ucneg 9282   NNcn 9990   NN0cn0 10211   ZZcz 10272   ...cfz 11033    || cdivides 12842  mzPolycmzp 26733  Diophcdioph 26767
This theorem is referenced by:  rmydioph  27039  expdiophlem2  27047
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7816  df-cda 8038  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-nn 9991  df-n0 10212  df-z 10273  df-uz 10479  df-fz 11034  df-hash 11609  df-dvds 12843  df-mzpcl 26734  df-mzp 26735  df-dioph 26768
  Copyright terms: Public domain W3C validator