Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvdsrabdioph Unicode version

Theorem dvdsrabdioph 26563
Description: Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
dvdsrabdioph  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  e.  (Dioph `  N
) )
Distinct variable group:    t, N
Allowed substitution hints:    A( t)    B( t)

Proof of Theorem dvdsrabdioph
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabdiophlem1 26554 . . . 4  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) A  e.  ZZ )
2 rabdiophlem1 26554 . . . 4  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) B  e.  ZZ )
3 divides 12783 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  E. a  e.  ZZ  (
a  x.  A )  =  B ) )
4 oveq1 6029 . . . . . . . . 9  |-  ( a  =  b  ->  (
a  x.  A )  =  ( b  x.  A ) )
54eqeq1d 2397 . . . . . . . 8  |-  ( a  =  b  ->  (
( a  x.  A
)  =  B  <->  ( b  x.  A )  =  B ) )
6 oveq1 6029 . . . . . . . . 9  |-  ( a  =  -u b  ->  (
a  x.  A )  =  ( -u b  x.  A ) )
76eqeq1d 2397 . . . . . . . 8  |-  ( a  =  -u b  ->  (
( a  x.  A
)  =  B  <->  ( -u b  x.  A )  =  B ) )
85, 7rexzrexnn0 26557 . . . . . . 7  |-  ( E. a  e.  ZZ  (
a  x.  A )  =  B  <->  E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) )
93, 8syl6bb 253 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  E. b  e.  NN0  (
( b  x.  A
)  =  B  \/  ( -u b  x.  A
)  =  B ) ) )
109ralimi 2726 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) ( A  ||  B  <->  E. b  e.  NN0  (
( b  x.  A
)  =  B  \/  ( -u b  x.  A
)  =  B ) ) )
11 r19.26 2783 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  e.  ZZ  /\  B  e.  ZZ )  <->  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) A  e.  ZZ  /\  A. t  e.  ( NN0  ^m  (
1 ... N ) ) B  e.  ZZ ) )
12 rabbi 2831 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A 
||  B  <->  E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) )  <->  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
1310, 11, 123imtr3i 257 . . . 4  |-  ( ( A. t  e.  ( NN0  ^m  ( 1 ... N ) ) A  e.  ZZ  /\  A. t  e.  ( NN0 
^m  ( 1 ... N ) ) B  e.  ZZ )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
141, 2, 13syl2an 464 . . 3  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
15143adant1 975 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) } )
16 nfcv 2525 . . . 4  |-  F/_ t
( NN0  ^m  (
1 ... N ) )
17 nfcv 2525 . . . 4  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
18 nfv 1626 . . . 4  |-  F/ a E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B )
19 nfcv 2525 . . . . 5  |-  F/_ t NN0
20 nfcv 2525 . . . . . . . 8  |-  F/_ t
b
21 nfcv 2525 . . . . . . . 8  |-  F/_ t  x.
22 nfcsb1v 3228 . . . . . . . 8  |-  F/_ t [_ a  /  t ]_ A
2320, 21, 22nfov 6045 . . . . . . 7  |-  F/_ t
( b  x.  [_ a  /  t ]_ A
)
24 nfcsb1v 3228 . . . . . . 7  |-  F/_ t [_ a  /  t ]_ B
2523, 24nfeq 2532 . . . . . 6  |-  F/ t ( b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
26 nfcv 2525 . . . . . . . 8  |-  F/_ t -u b
2726, 21, 22nfov 6045 . . . . . . 7  |-  F/_ t
( -u b  x.  [_ a  /  t ]_ A
)
2827, 24nfeq 2532 . . . . . 6  |-  F/ t ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
2925, 28nfor 1848 . . . . 5  |-  F/ t ( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)
3019, 29nfrex 2706 . . . 4  |-  F/ t E. b  e.  NN0  ( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)
31 csbeq1a 3204 . . . . . . . 8  |-  ( t  =  a  ->  A  =  [_ a  /  t ]_ A )
3231oveq2d 6038 . . . . . . 7  |-  ( t  =  a  ->  (
b  x.  A )  =  ( b  x. 
[_ a  /  t ]_ A ) )
33 csbeq1a 3204 . . . . . . 7  |-  ( t  =  a  ->  B  =  [_ a  /  t ]_ B )
3432, 33eqeq12d 2403 . . . . . 6  |-  ( t  =  a  ->  (
( b  x.  A
)  =  B  <->  ( b  x.  [_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
) )
3531oveq2d 6038 . . . . . . 7  |-  ( t  =  a  ->  ( -u b  x.  A )  =  ( -u b  x.  [_ a  /  t ]_ A ) )
3635, 33eqeq12d 2403 . . . . . 6  |-  ( t  =  a  ->  (
( -u b  x.  A
)  =  B  <->  ( -u b  x.  [_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
) )
3734, 36orbi12d 691 . . . . 5  |-  ( t  =  a  ->  (
( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B )  <->  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) ) )
3837rexbidv 2672 . . . 4  |-  ( t  =  a  ->  ( E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B )  <->  E. b  e.  NN0  ( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
) ) )
3916, 17, 18, 30, 38cbvrab 2899 . . 3  |-  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. b  e.  NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) }  =  { a  e.  ( NN0  ^m  (
1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) }
40 simp1 957 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  N  e.  NN0 )
41 peano2nn0 10194 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
42413ad2ant1 978 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( N  +  1 )  e.  NN0 )
43 ovex 6047 . . . . . . . . . 10  |-  ( 1 ... ( N  + 
1 ) )  e. 
_V
44 nn0p1nn 10193 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
45 elfz1end 11015 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  NN  <->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
4644, 45sylib 189 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
47 mzpproj 26487 . . . . . . . . . 10  |-  ( ( ( 1 ... ( N  +  1 ) )  e.  _V  /\  ( N  +  1
)  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( c  e.  ( ZZ  ^m  (
1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
4843, 46, 47sylancr 645 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  +  1 ) ) )  |->  ( c `
 ( N  + 
1 ) ) )  e.  (mzPoly `  (
1 ... ( N  + 
1 ) ) ) )
4948adantr 452 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
50 eqid 2389 . . . . . . . . 9  |-  ( N  +  1 )  =  ( N  +  1 )
5150rabdiophlem2 26555 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
52 mzpmulmpt 26492 . . . . . . . 8  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
)  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
5349, 51, 52syl2anc 643 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
54533adant3 977 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
5550rabdiophlem2 26555 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
56553adant2 976 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
57 eqrabdioph 26529 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN0  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  (
c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
)  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
5842, 54, 56, 57syl3anc 1184 . . . . 5  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
59 mzpnegmpt 26494 . . . . . . . . 9  |-  ( ( c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  ->  (
c  e.  ( ZZ 
^m  ( 1 ... ( N  +  1 ) ) )  |->  -u ( c `  ( N  +  1 ) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
6049, 59syl 16 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  -u ( c `  ( N  +  1
) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
61 mzpmulmpt 26492 . . . . . . . 8  |-  ( ( ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  -u ( c `  ( N  +  1
) ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
6260, 51, 61syl2anc 643 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
63623adant3 977 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )
64 eqrabdioph 26529 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN0  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) )  /\  ( c  e.  ( ZZ  ^m  ( 1 ... ( N  + 
1 ) ) ) 
|->  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )  e.  (mzPoly `  ( 1 ... ( N  +  1 ) ) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( -u (
c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
6542, 63, 56, 64syl3anc 1184 . . . . 5  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( -u (
c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) ) )
66 orrabdioph 26533 . . . . 5  |-  ( ( { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B }  e.  (Dioph `  ( N  +  1 ) )  /\  { c  e.  ( NN0  ^m  ( 1 ... ( N  +  1 ) ) )  |  (
-u ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
)  =  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ B }  e.  (Dioph `  ( N  + 
1 ) ) )  ->  { c  e.  ( NN0  ^m  (
1 ... ( N  + 
1 ) ) )  |  ( ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) }  e.  (Dioph `  ( N  +  1 ) ) )
6758, 65, 66syl2anc 643 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { c  e.  ( NN0  ^m  ( 1 ... ( N  + 
1 ) ) )  |  ( ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) }  e.  (Dioph `  ( N  +  1 ) ) )
68 oveq1 6029 . . . . . . 7  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
b  x.  [_ a  /  t ]_ A
)  =  ( ( c `  ( N  +  1 ) )  x.  [_ a  / 
t ]_ A ) )
6968eqeq1d 2397 . . . . . 6  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
( b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  ( ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) )
70 negeq 9232 . . . . . . . 8  |-  ( b  =  ( c `  ( N  +  1
) )  ->  -u b  =  -u ( c `  ( N  +  1
) ) )
7170oveq1d 6037 . . . . . . 7  |-  ( b  =  ( c `  ( N  +  1
) )  ->  ( -u b  x.  [_ a  /  t ]_ A
)  =  ( -u ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
) )
7271eqeq1d 2397 . . . . . 6  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  (
-u ( c `  ( N  +  1
) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) )
7369, 72orbi12d 691 . . . . 5  |-  ( b  =  ( c `  ( N  +  1
) )  ->  (
( ( b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u b  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)  <->  ( ( ( c `  ( N  +  1 ) )  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) ) )
74 csbeq1 3199 . . . . . . . 8  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  [_ a  /  t ]_ A  =  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )
7574oveq2d 6038 . . . . . . 7  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A ) )
76 csbeq1 3199 . . . . . . 7  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  [_ a  /  t ]_ B  =  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ B )
7775, 76eqeq12d 2403 . . . . . 6  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( ( c `  ( N  +  1
) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  ( ( c `  ( N  +  1 ) )  x.  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ A )  = 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ B ) )
7874oveq2d 6038 . . . . . . 7  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  ( -u ( c `  ( N  +  1 ) )  x.  [_ a  /  t ]_ A
)  =  ( -u ( c `  ( N  +  1 ) )  x.  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ A ) )
7978, 76eqeq12d 2403 . . . . . 6  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( -u ( c `  ( N  +  1
) )  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B  <->  (
-u ( c `  ( N  +  1
) )  x.  [_ ( c  |`  (
1 ... N ) )  /  t ]_ A
)  =  [_ (
c  |`  ( 1 ... N ) )  / 
t ]_ B ) )
8077, 79orbi12d 691 . . . . 5  |-  ( a  =  ( c  |`  ( 1 ... N
) )  ->  (
( ( ( c `
 ( N  + 
1 ) )  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ a  /  t ]_ A )  =  [_ a  /  t ]_ B
)  <->  ( ( ( c `  ( N  +  1 ) )  x.  [_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) ) )
8150, 73, 80rexrabdioph 26547 . . . 4  |-  ( ( N  e.  NN0  /\  { c  e.  ( NN0 
^m  ( 1 ... ( N  +  1 ) ) )  |  ( ( ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B  \/  ( -u ( c `
 ( N  + 
1 ) )  x. 
[_ ( c  |`  ( 1 ... N
) )  /  t ]_ A )  =  [_ ( c  |`  (
1 ... N ) )  /  t ]_ B
) }  e.  (Dioph `  ( N  +  1 ) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) }  e.  (Dioph `  N ) )
8240, 67, 81syl2anc 643 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  [_ a  / 
t ]_ A )  = 
[_ a  /  t ]_ B  \/  ( -u b  x.  [_ a  /  t ]_ A
)  =  [_ a  /  t ]_ B
) }  e.  (Dioph `  N ) )
8339, 82syl5eqel 2473 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  ( ( b  x.  A )  =  B  \/  ( -u b  x.  A )  =  B ) }  e.  (Dioph `  N ) )
8415, 83eqeltrd 2463 1  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  ||  B }  e.  (Dioph `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2651   E.wrex 2652   {crab 2655   _Vcvv 2901   [_csb 3196   class class class wbr 4155    e. cmpt 4209    |` cres 4822   ` cfv 5396  (class class class)co 6022    ^m cmap 6956   1c1 8926    + caddc 8928    x. cmul 8930   -ucneg 9226   NNcn 9934   NN0cn0 10155   ZZcz 10216   ...cfz 10977    || cdivides 12781  mzPolycmzp 26472  Diophcdioph 26506
This theorem is referenced by:  rmydioph  26778  expdiophlem2  26786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-map 6958  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-card 7761  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-hash 11548  df-dvds 12782  df-mzpcl 26473  df-mzp 26474  df-dioph 26507
  Copyright terms: Public domain W3C validator