Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrpropd Structured version   Unicode version

Theorem dvdsrpropd 15801
 Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1
rngidpropd.2
rngidpropd.3
Assertion
Ref Expression
dvdsrpropd r r
Distinct variable groups:   ,,   ,,   ,,   ,,

Proof of Theorem dvdsrpropd
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rngidpropd.3 . . . . . . . . 9
21anassrs 630 . . . . . . . 8
32eqeq1d 2444 . . . . . . 7
43an32s 780 . . . . . 6
54rexbidva 2722 . . . . 5
65pm5.32da 623 . . . 4
7 rngidpropd.1 . . . . . 6
87eleq2d 2503 . . . . 5
97rexeqdv 2911 . . . . 5
108, 9anbi12d 692 . . . 4
11 rngidpropd.2 . . . . . 6
1211eleq2d 2503 . . . . 5
1311rexeqdv 2911 . . . . 5
1412, 13anbi12d 692 . . . 4
156, 10, 143bitr3d 275 . . 3
1615opabbidv 4271 . 2
17 eqid 2436 . . 3
18 eqid 2436 . . 3 r r
19 eqid 2436 . . 3
2017, 18, 19dvdsrval 15750 . 2 r
21 eqid 2436 . . 3
22 eqid 2436 . . 3 r r
23 eqid 2436 . . 3
2421, 22, 23dvdsrval 15750 . 2 r
2516, 20, 243eqtr4g 2493 1 r r
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  wrex 2706  copab 4265  cfv 5454  (class class class)co 6081  cbs 13469  cmulr 13530  rcdsr 15743 This theorem is referenced by:  unitpropd  15802 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-dvdsr 15746
 Copyright terms: Public domain W3C validator