MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrpropd Unicode version

Theorem dvdsrpropd 15494
Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
rngidpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
rngidpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
dvdsrpropd  |-  ( ph  ->  ( ||r `
 K )  =  ( ||r `
 L ) )
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y

Proof of Theorem dvdsrpropd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 rngidpropd.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
21anassrs 629 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  B )  ->  (
x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )
32eqeq1d 2304 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  B )  ->  (
( x ( .r
`  K ) y )  =  z  <->  ( x
( .r `  L
) y )  =  z ) )
43an32s 779 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  x  e.  B )  ->  (
( x ( .r
`  K ) y )  =  z  <->  ( x
( .r `  L
) y )  =  z ) )
54rexbidva 2573 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  ( E. x  e.  B  ( x ( .r
`  K ) y )  =  z  <->  E. x  e.  B  ( x
( .r `  L
) y )  =  z ) )
65pm5.32da 622 . . . 4  |-  ( ph  ->  ( ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  K
) y )  =  z )  <->  ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  L
) y )  =  z ) ) )
7 rngidpropd.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
87eleq2d 2363 . . . . 5  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  K
) ) )
97rexeqdv 2756 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( .r `  K ) y )  =  z  <->  E. x  e.  ( Base `  K ) ( x ( .r `  K ) y )  =  z ) )
108, 9anbi12d 691 . . . 4  |-  ( ph  ->  ( ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  K
) y )  =  z )  <->  ( y  e.  ( Base `  K
)  /\  E. x  e.  ( Base `  K
) ( x ( .r `  K ) y )  =  z ) ) )
11 rngidpropd.2 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
1211eleq2d 2363 . . . . 5  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  L
) ) )
1311rexeqdv 2756 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( .r `  L ) y )  =  z  <->  E. x  e.  ( Base `  L ) ( x ( .r `  L ) y )  =  z ) )
1412, 13anbi12d 691 . . . 4  |-  ( ph  ->  ( ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  L
) y )  =  z )  <->  ( y  e.  ( Base `  L
)  /\  E. x  e.  ( Base `  L
) ( x ( .r `  L ) y )  =  z ) ) )
156, 10, 143bitr3d 274 . . 3  |-  ( ph  ->  ( ( y  e.  ( Base `  K
)  /\  E. x  e.  ( Base `  K
) ( x ( .r `  K ) y )  =  z )  <->  ( y  e.  ( Base `  L
)  /\  E. x  e.  ( Base `  L
) ( x ( .r `  L ) y )  =  z ) ) )
1615opabbidv 4098 . 2  |-  ( ph  ->  { <. y ,  z
>.  |  ( y  e.  ( Base `  K
)  /\  E. x  e.  ( Base `  K
) ( x ( .r `  K ) y )  =  z ) }  =  { <. y ,  z >.  |  ( y  e.  ( Base `  L
)  /\  E. x  e.  ( Base `  L
) ( x ( .r `  L ) y )  =  z ) } )
17 eqid 2296 . . 3  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2296 . . 3  |-  ( ||r `  K
)  =  ( ||r `  K
)
19 eqid 2296 . . 3  |-  ( .r
`  K )  =  ( .r `  K
)
2017, 18, 19dvdsrval 15443 . 2  |-  ( ||r `  K
)  =  { <. y ,  z >.  |  ( y  e.  ( Base `  K )  /\  E. x  e.  ( Base `  K ) ( x ( .r `  K
) y )  =  z ) }
21 eqid 2296 . . 3  |-  ( Base `  L )  =  (
Base `  L )
22 eqid 2296 . . 3  |-  ( ||r `  L
)  =  ( ||r `  L
)
23 eqid 2296 . . 3  |-  ( .r
`  L )  =  ( .r `  L
)
2421, 22, 23dvdsrval 15443 . 2  |-  ( ||r `  L
)  =  { <. y ,  z >.  |  ( y  e.  ( Base `  L )  /\  E. x  e.  ( Base `  L ) ( x ( .r `  L
) y )  =  z ) }
2516, 20, 243eqtr4g 2353 1  |-  ( ph  ->  ( ||r `
 K )  =  ( ||r `
 L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   {copab 4092   ` cfv 5271  (class class class)co 5874   Basecbs 13164   .rcmulr 13225   ||rcdsr 15436
This theorem is referenced by:  unitpropd  15495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-dvdsr 15439
  Copyright terms: Public domain W3C validator