MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsrtr Structured version   Unicode version

Theorem dvdsrtr 15758
Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1  |-  B  =  ( Base `  R
)
dvdsr.2  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
dvdsrtr  |-  ( ( R  e.  Ring  /\  Y  .|| 
Z  /\  Z  .||  X )  ->  Y  .||  X )

Proof of Theorem dvdsrtr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . . 6  |-  B  =  ( Base `  R
)
2 dvdsr.2 . . . . . 6  |-  .||  =  (
||r `  R )
3 eqid 2437 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
41, 2, 3dvdsr 15752 . . . . 5  |-  ( Y 
.||  Z  <->  ( Y  e.  B  /\  E. y  e.  B  ( y
( .r `  R
) Y )  =  Z ) )
51, 2, 3dvdsr 15752 . . . . 5  |-  ( Z 
.||  X  <->  ( Z  e.  B  /\  E. x  e.  B  ( x
( .r `  R
) Z )  =  X ) )
64, 5anbi12i 680 . . . 4  |-  ( ( Y  .||  Z  /\  Z  .||  X )  <->  ( ( Y  e.  B  /\  E. y  e.  B  ( y ( .r `  R ) Y )  =  Z )  /\  ( Z  e.  B  /\  E. x  e.  B  ( x ( .r
`  R ) Z )  =  X ) ) )
7 an4 799 . . . 4  |-  ( ( ( Y  e.  B  /\  E. y  e.  B  ( y ( .r
`  R ) Y )  =  Z )  /\  ( Z  e.  B  /\  E. x  e.  B  ( x
( .r `  R
) Z )  =  X ) )  <->  ( ( Y  e.  B  /\  Z  e.  B )  /\  ( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) ) )
86, 7bitri 242 . . 3  |-  ( ( Y  .||  Z  /\  Z  .||  X )  <->  ( ( Y  e.  B  /\  Z  e.  B )  /\  ( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) ) )
9 reeanv 2876 . . . . 5  |-  ( E. y  e.  B  E. x  e.  B  (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  <-> 
( E. y  e.  B  ( y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X ) )
10 simplrl 738 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  e.  B )
11 simpll 732 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  R  e.  Ring )
12 simprr 735 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  x  e.  B )
13 simprl 734 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  y  e.  B )
141, 3rngcl 15678 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  R ) y )  e.  B )
1511, 12, 13, 14syl3anc 1185 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( x
( .r `  R
) y )  e.  B )
161, 2, 3dvdsrmul 15754 . . . . . . . . 9  |-  ( ( Y  e.  B  /\  ( x ( .r
`  R ) y )  e.  B )  ->  Y  .||  ( ( x ( .r `  R ) y ) ( .r `  R
) Y ) )
1710, 15, 16syl2anc 644 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  .||  ( ( x ( .r `  R ) y ) ( .r `  R
) Y ) )
181, 3rngass 15681 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B  /\  Y  e.  B )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) Y )  =  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) ) )
1911, 12, 13, 10, 18syl13anc 1187 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( (
x ( .r `  R ) y ) ( .r `  R
) Y )  =  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) ) )
2017, 19breqtrd 4237 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  Y  .||  ( x ( .r `  R
) ( y ( .r `  R ) Y ) ) )
21 oveq2 6090 . . . . . . . . 9  |-  ( ( y ( .r `  R ) Y )  =  Z  ->  (
x ( .r `  R ) ( y ( .r `  R
) Y ) )  =  ( x ( .r `  R ) Z ) )
22 id 21 . . . . . . . . 9  |-  ( ( x ( .r `  R ) Z )  =  X  ->  (
x ( .r `  R ) Z )  =  X )
2321, 22sylan9eq 2489 . . . . . . . 8  |-  ( ( ( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  ( x ( .r `  R ) ( y ( .r
`  R ) Y ) )  =  X )
2423breq2d 4225 . . . . . . 7  |-  ( ( ( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  ( Y  .||  ( x ( .r
`  R ) ( y ( .r `  R ) Y ) )  <->  Y  .||  X ) )
2520, 24syl5ibcom 213 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  x  e.  B )
)  ->  ( (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  Y  .||  X ) )
2625rexlimdvva 2838 . . . . 5  |-  ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B )
)  ->  ( E. y  e.  B  E. x  e.  B  (
( y ( .r
`  R ) Y )  =  Z  /\  ( x ( .r
`  R ) Z )  =  X )  ->  Y  .||  X ) )
279, 26syl5bir 211 . . . 4  |-  ( ( R  e.  Ring  /\  ( Y  e.  B  /\  Z  e.  B )
)  ->  ( ( E. y  e.  B  ( y ( .r
`  R ) Y )  =  Z  /\  E. x  e.  B  ( x ( .r `  R ) Z )  =  X )  ->  Y  .||  X ) )
2827expimpd 588 . . 3  |-  ( R  e.  Ring  ->  ( ( ( Y  e.  B  /\  Z  e.  B
)  /\  ( E. y  e.  B  (
y ( .r `  R ) Y )  =  Z  /\  E. x  e.  B  (
x ( .r `  R ) Z )  =  X ) )  ->  Y  .||  X ) )
298, 28syl5bi 210 . 2  |-  ( R  e.  Ring  ->  ( ( Y  .||  Z  /\  Z  .||  X )  ->  Y  .||  X ) )
30293impib 1152 1  |-  ( ( R  e.  Ring  /\  Y  .|| 
Z  /\  Z  .||  X )  ->  Y  .||  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   E.wrex 2707   class class class wbr 4213   ` cfv 5455  (class class class)co 6082   Basecbs 13470   .rcmulr 13531   Ringcrg 15661   ||rcdsr 15744
This theorem is referenced by:  dvdsunit  15769  unitmulcl  15770  unitnegcl  15787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-riota 6550  df-recs 6634  df-rdg 6669  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-nn 10002  df-2 10059  df-ndx 13473  df-slot 13474  df-base 13475  df-sets 13476  df-plusg 13543  df-mnd 14691  df-mgp 15650  df-rng 15664  df-dvdsr 15747
  Copyright terms: Public domain W3C validator