MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdstr Unicode version

Theorem dvdstr 12562
Description: The divides relation is transitive. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdstr  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  M  ||  N )  ->  K  ||  N
) )

Proof of Theorem dvdstr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 952 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  M  e.  ZZ ) )
2 3simpc 954 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
3 3simpb 953 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
4 zmulcl 10066 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
54adantl 452 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  y )  e.  ZZ )
6 oveq2 5866 . . . . 5  |-  ( ( x  x.  K )  =  M  ->  (
y  x.  ( x  x.  K ) )  =  ( y  x.  M ) )
76adantr 451 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( y  x.  ( x  x.  K
) )  =  ( y  x.  M ) )
8 eqeq2 2292 . . . . 5  |-  ( ( y  x.  M )  =  N  ->  (
( y  x.  (
x  x.  K ) )  =  ( y  x.  M )  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
98adantl 452 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( ( y  x.  ( x  x.  K ) )  =  ( y  x.  M
)  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
107, 9mpbid 201 . . 3  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( y  x.  ( x  x.  K
) )  =  N )
11 zcn 10029 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
12 zcn 10029 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
13 zcn 10029 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
14 mulass 8825 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  y
)  x.  K )  =  ( x  x.  ( y  x.  K
) ) )
15 mul12 8978 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
x  x.  ( y  x.  K ) )  =  ( y  x.  ( x  x.  K
) ) )
1614, 15eqtrd 2315 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
1711, 12, 13, 16syl3an 1224 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ  /\  K  e.  ZZ )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
18173comr 1159 . . . . . 6  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
19183expb 1152 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  y )  x.  K )  =  ( y  x.  (
x  x.  K ) ) )
20193ad2antl1 1117 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  y )  x.  K )  =  ( y  x.  (
x  x.  K ) ) )
2120eqeq1d 2291 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  y
)  x.  K )  =  N  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
2210, 21syl5ibr 212 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( ( x  x.  y )  x.  K )  =  N ) )
231, 2, 3, 5, 22dvds2lem 12541 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  M  ||  N )  ->  K  ||  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023  (class class class)co 5858   CCcc 8735    x. cmul 8742   ZZcz 10024    || cdivides 12531
This theorem is referenced by:  dvdsmultr1  12563  dvdsmultr2  12564  bitsmod  12627  dvdsgcdb  12723  dvdsmulgcd  12733  mulgcddvds  12783  rpmulgcd2  12784  exprmfct  12789  isprm5  12791  rpexp  12799  rpdvds  12803  phimullem  12847  pcpremul  12896  pcdvdsb  12921  pcdvdstr  12928  pcprmpw2  12934  pockthlem  12952  prmreclem3  12965  4sqlem8  12992  odmulg  14869  ablfac1b  15305  ablfac1eu  15308  znunit  16517  wilth  20309  muval1  20371  dvdssqf  20376  sqff1o  20420  fsumdvdsdiaglem  20423  dvdsmulf1o  20434  vmasum  20455  bposlem3  20525  lgsmod  20560  lgsquad2lem1  20597  2sqlem3  20605  2sqlem8  20611  dvdspw  24103  dvdsacongtr  27071  jm2.20nn  27090  jm2.27a  27098  jm2.27c  27100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-dvds 12532
  Copyright terms: Public domain W3C validator