MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsval2 Unicode version

Theorem dvdsval2 12550
Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
dvdsval2  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )

Proof of Theorem dvdsval2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 divides 12549 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. k  e.  ZZ  (
k  x.  M )  =  N ) )
213adant2 974 . 2  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. k  e.  ZZ  ( k  x.  M )  =  N ) )
3 zcn 10045 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  CC )
433ad2ant3 978 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  N  e.  CC )
54adantr 451 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  N  e.  CC )
6 zcn 10045 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  k  e.  CC )
76adantl 452 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  k  e.  CC )
8 zcn 10045 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  CC )
983ad2ant1 976 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  M  e.  CC )
109adantr 451 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  M  e.  CC )
11 simpl2 959 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  M  =/=  0
)
125, 7, 10, 11divmul3d 9586 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( N  /  M )  =  k  <->  N  =  (
k  x.  M ) ) )
13 eqcom 2298 . . . . . . . . 9  |-  ( N  =  ( k  x.  M )  <->  ( k  x.  M )  =  N )
1412, 13syl6bb 252 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( N  /  M )  =  k  <->  ( k  x.  M )  =  N ) )
1514biimprd 214 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( k  x.  M )  =  N  ->  ( N  /  M )  =  k ) )
1615impr 602 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( k  x.  M )  =  N ) )  -> 
( N  /  M
)  =  k )
17 simprl 732 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( k  x.  M )  =  N ) )  -> 
k  e.  ZZ )
1816, 17eqeltrd 2370 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( k  x.  M )  =  N ) )  -> 
( N  /  M
)  e.  ZZ )
1918exp32 588 . . . 4  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  (
k  e.  ZZ  ->  ( ( k  x.  M
)  =  N  -> 
( N  /  M
)  e.  ZZ ) ) )
2019rexlimdv 2679 . . 3  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( k  x.  M
)  =  N  -> 
( N  /  M
)  e.  ZZ ) )
21 simpr 447 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( N  /  M )  e.  ZZ )  ->  ( N  /  M )  e.  ZZ )
22 simp2 956 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  M  =/=  0 )
234, 9, 22divcan1d 9553 . . . . . 6  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  (
( N  /  M
)  x.  M )  =  N )
2423adantr 451 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( N  /  M )  e.  ZZ )  ->  ( ( N  /  M )  x.  M )  =  N )
25 oveq1 5881 . . . . . . 7  |-  ( k  =  ( N  /  M )  ->  (
k  x.  M )  =  ( ( N  /  M )  x.  M ) )
2625eqeq1d 2304 . . . . . 6  |-  ( k  =  ( N  /  M )  ->  (
( k  x.  M
)  =  N  <->  ( ( N  /  M )  x.  M )  =  N ) )
2726rspcev 2897 . . . . 5  |-  ( ( ( N  /  M
)  e.  ZZ  /\  ( ( N  /  M )  x.  M
)  =  N )  ->  E. k  e.  ZZ  ( k  x.  M
)  =  N )
2821, 24, 27syl2anc 642 . . . 4  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( N  /  M )  e.  ZZ )  ->  E. k  e.  ZZ  ( k  x.  M
)  =  N )
2928ex 423 . . 3  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  (
( N  /  M
)  e.  ZZ  ->  E. k  e.  ZZ  (
k  x.  M )  =  N ) )
3020, 29impbid 183 . 2  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( k  x.  M
)  =  N  <->  ( N  /  M )  e.  ZZ ) )
312, 30bitrd 244 1  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   class class class wbr 4039  (class class class)co 5874   CCcc 8751   0cc0 8753    x. cmul 8758    / cdiv 9439   ZZcz 10040    || cdivides 12547
This theorem is referenced by:  dvdsval3  12551  nndivdvds  12553  fsumdvds  12588  3dvds  12607  bitsmod  12643  sadaddlem  12673  bitsuz  12681  mulgcd  12741  sqgcd  12753  prmind2  12785  mulgcddvds  12799  qredeu  12802  isprm5  12807  divgcdodd  12814  divnumden  12835  hashdvds  12859  oddprm  12884  pythagtriplem11  12894  pythagtriplem13  12896  pythagtriplem19  12902  pcprendvds2  12910  pcpremul  12912  pc2dvds  12947  pcz  12949  pcadd  12953  pcmptdvds  12958  fldivp1  12961  pockthlem  12968  prmreclem1  12979  prmreclem3  12981  4sqlem8  13008  4sqlem9  13009  4sqlem12  13019  4sqlem14  13021  sylow1lem1  14925  sylow3lem4  14957  odadd1  15156  odadd2  15157  pgpfac1lem3  15328  prmirredlem  16462  znidomb  16531  root1eq1  20111  atantayl2  20250  efchtdvds  20413  dvdsdivcl  20437  muinv  20449  chtub  20467  bposlem6  20544  lgseisenlem1  20604  lgsquad2lem1  20613  lgsquad3  20616  m1lgs  20617  2sqlem3  20621  2sqlem8  20627  divides2OLD  26340  nn0prpwlem  26341  congrep  27163  jm2.22  27191  jm2.23  27192  hashgcdlem  27619  proot1ex  27623
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-z 10041  df-dvds 12548
  Copyright terms: Public domain W3C validator