MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdszrcl Unicode version

Theorem dvdszrcl 12812
Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
dvdszrcl  |-  ( X 
||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )

Proof of Theorem dvdszrcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 12808 . . 3  |-  ||  =  { <. x ,  y
>.  |  ( (
x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x
)  =  y ) }
2 opabssxp 4909 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }  C_  ( ZZ  X.  ZZ )
31, 2eqsstri 3338 . 2  |-  ||  C_  ( ZZ  X.  ZZ )
43brel 4885 1  |-  ( X 
||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   E.wrex 2667   class class class wbr 4172   {copab 4225    X. cxp 4835  (class class class)co 6040    x. cmul 8951   ZZcz 10238    || cdivides 12807
This theorem is referenced by:  dvdsmulgcd  13009  oddvdsi  15141  odmulg  15147  gexdvdsi  15172
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-xp 4843  df-dvds 12808
  Copyright terms: Public domain W3C validator