MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveel2 Unicode version

Theorem dveel2 1960
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
dveel2  |-  ( -. 
A. x  x  =  y  ->  ( z  e.  y  ->  A. x  z  e.  y )
)
Distinct variable group:    x, z

Proof of Theorem dveel2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elequ2 1689 . 2  |-  ( w  =  y  ->  (
z  e.  w  <->  z  e.  y ) )
21dvelimv 1879 1  |-  ( -. 
A. x  x  =  y  ->  ( z  e.  y  ->  A. x  z  e.  y )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1527
This theorem is referenced by:  ax15  1961
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529
  Copyright terms: Public domain W3C validator