MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveeq1-o Unicode version

Theorem dveeq1-o 2126
Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq1 1958 using ax-10o . (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dveeq1-o  |-  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
Distinct variable group:    x, z

Proof of Theorem dveeq1-o
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ax-17 1603 . 2  |-  ( w  =  z  ->  A. x  w  =  z )
2 ax-17 1603 . 2  |-  ( y  =  z  ->  A. w  y  =  z )
3 equequ1 1648 . 2  |-  ( w  =  y  ->  (
w  =  z  <->  y  =  z ) )
41, 2, 3dvelimf-o 2119 1  |-  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1527
This theorem is referenced by:  ax11inda2ALT  2137
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-4 2074  ax-5o 2075  ax-6o 2076  ax-10o 2078  ax-12o 2081
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator