MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveeq1-o16 Unicode version

Theorem dveeq1-o16 2127
Description: Version of dveeq1 1958 using ax-16 2083 instead of ax-17 1603. (Contributed by NM, 29-Apr-2008.) TO DO: Recover proof from older set.mm to remove use of ax-17 1603. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dveeq1-o16  |-  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
Distinct variable group:    x, z

Proof of Theorem dveeq1-o16
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ax17eq 2122 . 2  |-  ( w  =  z  ->  A. x  w  =  z )
2 ax17eq 2122 . 2  |-  ( y  =  z  ->  A. w  y  =  z )
3 equequ1 1648 . 2  |-  ( w  =  y  ->  (
w  =  z  <->  y  =  z ) )
41, 2, 3dvelimh 1904 1  |-  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1527
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-12o 2081  ax-16 2083
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
  Copyright terms: Public domain W3C validator