![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dveeq2 | Unicode version |
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Revised by NM, 20-Jul-2015.) |
Ref | Expression |
---|---|
dveeq2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 1694 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | dvelimv 2020 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem is referenced by: ax11v2 2025 ax11v2OLD 2026 sbal1 2184 copsexg 4410 axpowndlem3 8438 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 |
This theorem depends on definitions: df-bi 178 df-an 361 df-tru 1325 df-ex 1548 df-nf 1551 |
Copyright terms: Public domain | W3C validator |