MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvef Structured version   Unicode version

Theorem dvef 19869
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvef  |-  ( CC 
_D  exp )  =  exp

Proof of Theorem dvef
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfcn 19800 . . . . . . 7  |-  ( CC 
_D  exp ) : dom  ( CC  _D  exp ) --> CC
2 dvbsss 19794 . . . . . . . . 9  |-  dom  ( CC  _D  exp )  C_  CC
3 efcl 12690 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  ( exp `  x )  e.  CC )
4 fconstg 5633 . . . . . . . . . . . . . . . 16  |-  ( ( exp `  x )  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> { ( exp `  x ) } )
53, 4syl 16 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> { ( exp `  x ) } )
63snssd 3945 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  { ( exp `  x ) }  C_  CC )
7 fss 5602 . . . . . . . . . . . . . . 15  |-  ( ( ( CC  X.  {
( exp `  x
) } ) : CC --> { ( exp `  x ) }  /\  { ( exp `  x
) }  C_  CC )  ->  ( CC  X.  { ( exp `  x
) } ) : CC --> CC )
85, 6, 7syl2anc 644 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } ) : CC --> CC )
9 ssid 3369 . . . . . . . . . . . . . . 15  |-  CC  C_  CC
109a1i 11 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  CC  C_  CC )
11 subcl 9310 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  CC  /\  x  e.  CC )  ->  ( z  -  x
)  e.  CC )
1211ancoms 441 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( z  -  x
)  e.  CC )
13 efcl 12690 . . . . . . . . . . . . . . . 16  |-  ( ( z  -  x )  e.  CC  ->  ( exp `  ( z  -  x ) )  e.  CC )
1412, 13syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
z  -  x ) )  e.  CC )
15 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) )  =  ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) )
1614, 15fmptd 5896 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) : CC --> CC )
17 0cn 9089 . . . . . . . . . . . . . . 15  |-  0  e.  CC
1817a1i 11 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  0  e.  CC )
19 ax-1cn 9053 . . . . . . . . . . . . . . 15  |-  1  e.  CC
2019a1i 11 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  1  e.  CC )
2117elexi 2967 . . . . . . . . . . . . . . . . . 18  |-  0  e.  _V
2221snid 3843 . . . . . . . . . . . . . . . . 17  |-  0  e.  { 0 }
23 opelxpi 4913 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  0  e.  { 0 } )  ->  <. x ,  0 >.  e.  ( CC  X.  { 0 } ) )
2422, 23mpan2 654 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  <. x ,  0 >.  e.  ( CC  X.  { 0 } ) )
25 dvconst 19808 . . . . . . . . . . . . . . . . 17  |-  ( ( exp `  x )  e.  CC  ->  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) )  =  ( CC  X.  { 0 } ) )
263, 25syl 16 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) )  =  ( CC  X.  { 0 } ) )
2724, 26eleqtrrd 2515 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  <. x ,  0 >.  e.  ( CC  _D  ( CC 
X.  { ( exp `  x ) } ) ) )
28 df-br 4216 . . . . . . . . . . . . . . 15  |-  ( x ( CC  _D  ( CC  X.  { ( exp `  x ) } ) ) 0  <->  <. x ,  0 >.  e.  ( CC  _D  ( CC  X.  { ( exp `  x
) } ) ) )
2927, 28sylibr 205 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  x
( CC  _D  ( CC  X.  { ( exp `  x ) } ) ) 0 )
30 eff 12689 . . . . . . . . . . . . . . . . . 18  |-  exp : CC
--> CC
3130a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  exp : CC --> CC )
32 eqid 2438 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  CC  |->  ( z  -  x ) )  =  ( z  e.  CC  |->  ( z  -  x ) )
3312, 32fmptd 5896 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( z  -  x ) ) : CC --> CC )
34 oveq1 6091 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  x  ->  (
z  -  x )  =  ( x  -  x ) )
35 ovex 6109 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  -  x )  e. 
_V
3634, 32, 35fvmpt 5809 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
)  =  ( x  -  x ) )
37 subid 9326 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  (
x  -  x )  =  0 )
3836, 37eqtrd 2470 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
)  =  0 )
39 dveflem 19868 . . . . . . . . . . . . . . . . . 18  |-  0
( CC  _D  exp ) 1
4038, 39syl6eqbr 4252 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( z  -  x
) ) `  x
) ( CC  _D  exp ) 1 )
4119elexi 2967 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  _V
4241snid 3843 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  { 1 }
43 opelxpi 4913 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  CC  /\  1  e.  { 1 } )  ->  <. x ,  1 >.  e.  ( CC  X.  { 1 } ) )
4442, 43mpan2 654 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  <. x ,  1 >.  e.  ( CC  X.  { 1 } ) )
45 cnex 9076 . . . . . . . . . . . . . . . . . . . . . . 23  |-  CC  e.  _V
4645prid2 3915 . . . . . . . . . . . . . . . . . . . . . 22  |-  CC  e.  { RR ,  CC }
4746a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  CC  e.  { RR ,  CC } )
48 simpr 449 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  z  e.  CC )
4919a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  1  e.  CC )
5047dvmptid 19848 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  z ) )  =  ( z  e.  CC  |->  1 ) )
51 simpl 445 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  x  e.  CC )
5217a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  0  e.  CC )
53 id 21 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  CC  ->  x  e.  CC )
5447, 53dvmptc 19849 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  x ) )  =  ( z  e.  CC  |->  0 ) )
5547, 48, 49, 50, 51, 52, 54dvmptsub 19858 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( 1  -  0 ) ) )
5619subid1i 9377 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1  -  0 )  =  1
5756mpteq2i 4295 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  CC  |->  ( 1  -  0 ) )  =  ( z  e.  CC  |->  1 )
58 fconstmpt 4924 . . . . . . . . . . . . . . . . . . . . 21  |-  ( CC 
X.  { 1 } )  =  ( z  e.  CC  |->  1 )
5957, 58eqtr4i 2461 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  CC  |->  ( 1  -  0 ) )  =  ( CC  X.  { 1 } )
6055, 59syl6eq 2486 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  CC  ->  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( CC  X.  { 1 } ) )
6144, 60eleqtrrd 2515 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  <. x ,  1 >.  e.  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) ) )
62 df-br 4216 . . . . . . . . . . . . . . . . . 18  |-  ( x ( CC  _D  (
z  e.  CC  |->  ( z  -  x ) ) ) 1  <->  <. x ,  1 >.  e.  ( CC  _D  ( z  e.  CC  |->  ( z  -  x ) ) ) )
6361, 62sylibr 205 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  x
( CC  _D  (
z  e.  CC  |->  ( z  -  x ) ) ) 1 )
64 eqid 2438 . . . . . . . . . . . . . . . . 17  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
6531, 10, 33, 10, 10, 10, 20, 20, 40, 63, 64dvcobr 19837 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  x
( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) ( 1  x.  1 ) )
66 1t1e1 10131 . . . . . . . . . . . . . . . 16  |-  ( 1  x.  1 )  =  1
6765, 66syl6breq 4254 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  x
( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) 1 )
68 eqidd 2439 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( z  -  x ) )  =  ( z  e.  CC  |->  ( z  -  x ) ) )
6931feqmptd 5782 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  exp  =  ( y  e.  CC  |->  ( exp `  y
) ) )
70 fveq2 5731 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( z  -  x )  ->  ( exp `  y )  =  ( exp `  (
z  -  x ) ) )
7112, 68, 69, 70fmptco 5904 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( exp `  (
z  -  x ) ) ) )
7271oveq2d 6100 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  ( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x
) ) ) )  =  ( CC  _D  ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) )
7372breqd 4226 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
x ( CC  _D  ( exp  o.  ( z  e.  CC  |->  ( z  -  x ) ) ) ) 1  <->  x
( CC  _D  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) 1 ) )
7467, 73mpbid 203 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  x
( CC  _D  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) 1 )
758, 10, 16, 10, 10, 18, 20, 29, 74, 64dvmulbr 19830 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  x
( CC  _D  (
( CC  X.  {
( exp `  x
) } )  o F  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( ( 0  x.  ( ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) `  x ) )  +  ( 1  x.  (
( CC  X.  {
( exp `  x
) } ) `  x ) ) ) )
7616, 53ffvelrnd 5874 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x )  e.  CC )
7776mul02d 9269 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
0  x.  ( ( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  =  0 )
78 fvex 5745 . . . . . . . . . . . . . . . . . 18  |-  ( exp `  x )  e.  _V
7978fvconst2 5950 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } ) `  x )  =  ( exp `  x ) )
8079oveq2d 6100 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
1  x.  ( ( CC  X.  { ( exp `  x ) } ) `  x
) )  =  ( 1  x.  ( exp `  x ) ) )
813mulid2d 9111 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
1  x.  ( exp `  x ) )  =  ( exp `  x
) )
8280, 81eqtrd 2470 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
1  x.  ( ( CC  X.  { ( exp `  x ) } ) `  x
) )  =  ( exp `  x ) )
8377, 82oveq12d 6102 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
( 0  x.  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  +  ( 1  x.  ( ( CC 
X.  { ( exp `  x ) } ) `
 x ) ) )  =  ( 0  +  ( exp `  x
) ) )
843addid2d 9272 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
0  +  ( exp `  x ) )  =  ( exp `  x
) )
8583, 84eqtrd 2470 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
( 0  x.  (
( z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) `  x ) )  +  ( 1  x.  ( ( CC 
X.  { ( exp `  x ) } ) `
 x ) ) )  =  ( exp `  x ) )
8675, 85breqtrd 4239 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  x
( CC  _D  (
( CC  X.  {
( exp `  x
) } )  o F  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( exp `  x
) )
8745a1i 11 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  CC  e.  _V )
8878a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  x
)  e.  _V )
89 fvex 5745 . . . . . . . . . . . . . . . . 17  |-  ( exp `  ( z  -  x
) )  e.  _V
9089a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
z  -  x ) )  e.  _V )
91 fconstmpt 4924 . . . . . . . . . . . . . . . . 17  |-  ( CC 
X.  { ( exp `  x ) } )  =  ( z  e.  CC  |->  ( exp `  x
) )
9291a1i 11 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  ( CC  X.  { ( exp `  x ) } )  =  ( z  e.  CC  |->  ( exp `  x
) ) )
93 eqidd 2439 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) )  =  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )
9487, 88, 90, 92, 93offval2 6325 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } )  o F  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )  =  ( z  e.  CC  |->  ( ( exp `  x )  x.  ( exp `  ( z  -  x ) ) ) ) )
9531feqmptd 5782 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  exp  =  ( z  e.  CC  |->  ( exp `  z
) ) )
96 efadd 12701 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  ( z  -  x
)  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( ( exp `  x )  x.  ( exp `  (
z  -  x ) ) ) )
9751, 12, 96syl2anc 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( ( exp `  x )  x.  ( exp `  (
z  -  x ) ) ) )
98 pncan3 9318 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( x  +  ( z  -  x ) )  =  z )
9998fveq2d 5735 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( exp `  (
x  +  ( z  -  x ) ) )  =  ( exp `  z ) )
10097, 99eqtr3d 2472 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( ( exp `  x
)  x.  ( exp `  ( z  -  x
) ) )  =  ( exp `  z
) )
101100mpteq2dva 4298 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  (
z  e.  CC  |->  ( ( exp `  x
)  x.  ( exp `  ( z  -  x
) ) ) )  =  ( z  e.  CC  |->  ( exp `  z
) ) )
10295, 101eqtr4d 2473 . . . . . . . . . . . . . . 15  |-  ( x  e.  CC  ->  exp  =  ( z  e.  CC  |->  ( ( exp `  x )  x.  ( exp `  ( z  -  x ) ) ) ) )
10394, 102eqtr4d 2473 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  (
( CC  X.  {
( exp `  x
) } )  o F  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) )  =  exp )
104103oveq2d 6100 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( CC  _D  ( ( CC 
X.  { ( exp `  x ) } )  o F  x.  (
z  e.  CC  |->  ( exp `  ( z  -  x ) ) ) ) )  =  ( CC  _D  exp ) )
105104breqd 4226 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
x ( CC  _D  ( ( CC  X.  { ( exp `  x
) } )  o F  x.  ( z  e.  CC  |->  ( exp `  ( z  -  x
) ) ) ) ) ( exp `  x
)  <->  x ( CC 
_D  exp ) ( exp `  x ) ) )
10686, 105mpbid 203 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  x
( CC  _D  exp ) ( exp `  x
) )
107 vex 2961 . . . . . . . . . . . 12  |-  x  e. 
_V
108107, 78breldm 5077 . . . . . . . . . . 11  |-  ( x ( CC  _D  exp ) ( exp `  x
)  ->  x  e.  dom  ( CC  _D  exp ) )
109106, 108syl 16 . . . . . . . . . 10  |-  ( x  e.  CC  ->  x  e.  dom  ( CC  _D  exp ) )
110109ssriv 3354 . . . . . . . . 9  |-  CC  C_  dom  ( CC  _D  exp )
1112, 110eqssi 3366 . . . . . . . 8  |-  dom  ( CC  _D  exp )  =  CC
112111feq2i 5589 . . . . . . 7  |-  ( ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC  <->  ( CC  _D  exp ) : CC --> CC )
1131, 112mpbi 201 . . . . . 6  |-  ( CC 
_D  exp ) : CC --> CC
114113a1i 11 . . . . 5  |-  (  T. 
->  ( CC  _D  exp ) : CC --> CC )
115114feqmptd 5782 . . . 4  |-  (  T. 
->  ( CC  _D  exp )  =  ( x  e.  CC  |->  ( ( CC 
_D  exp ) `  x
) ) )
116 ffun 5596 . . . . . . 7  |-  ( ( CC  _D  exp ) : dom  ( CC  _D  exp ) --> CC  ->  Fun  ( CC  _D  exp )
)
1171, 116ax-mp 5 . . . . . 6  |-  Fun  ( CC  _D  exp )
118 funbrfv 5768 . . . . . 6  |-  ( Fun  ( CC  _D  exp )  ->  ( x ( CC  _D  exp )
( exp `  x
)  ->  ( ( CC  _D  exp ) `  x )  =  ( exp `  x ) ) )
119117, 106, 118mpsyl 62 . . . . 5  |-  ( x  e.  CC  ->  (
( CC  _D  exp ) `  x )  =  ( exp `  x
) )
120119mpteq2ia 4294 . . . 4  |-  ( x  e.  CC  |->  ( ( CC  _D  exp ) `  x ) )  =  ( x  e.  CC  |->  ( exp `  x ) )
121115, 120syl6eq 2486 . . 3  |-  (  T. 
->  ( CC  _D  exp )  =  ( x  e.  CC  |->  ( exp `  x
) ) )
12230a1i 11 . . . 4  |-  (  T. 
->  exp : CC --> CC )
123122feqmptd 5782 . . 3  |-  (  T. 
->  exp  =  ( x  e.  CC  |->  ( exp `  x ) ) )
124121, 123eqtr4d 2473 . 2  |-  (  T. 
->  ( CC  _D  exp )  =  exp )
125124trud 1333 1  |-  ( CC 
_D  exp )  =  exp
Colors of variables: wff set class
Syntax hints:    /\ wa 360    T. wtru 1326    = wceq 1653    e. wcel 1726   _Vcvv 2958    C_ wss 3322   {csn 3816   {cpr 3817   <.cop 3819   class class class wbr 4215    e. cmpt 4269    X. cxp 4879   dom cdm 4881    o. ccom 4885   Fun wfun 5451   -->wf 5453   ` cfv 5457  (class class class)co 6084    o Fcof 6306   CCcc 8993   RRcr 8994   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000    - cmin 9296   expce 12669   TopOpenctopn 13654  ℂfldccnfld 16708    _D cdv 19755
This theorem is referenced by:  dvsincos  19870  efcn  20364  efcvx  20370  pige3  20430  dvrelog  20533  dvlog  20547  dvcxp1  20631  dvcxp2  20632  dvsef  27540  expgrowthi  27541  expgrowth  27543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-fl 11207  df-seq 11329  df-exp 11388  df-fac 11572  df-bc 11599  df-hash 11624  df-shft 11887  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-limsup 12270  df-clim 12287  df-rlim 12288  df-sum 12485  df-ef 12675  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-hom 13558  df-cco 13559  df-rest 13655  df-topn 13656  df-topgen 13672  df-pt 13673  df-prds 13676  df-xrs 13731  df-0g 13732  df-gsum 13733  df-qtop 13738  df-imas 13739  df-xps 13741  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-mulg 14820  df-cntz 15121  df-cmn 15419  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-fbas 16704  df-fg 16705  df-cnfld 16709  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cld 17088  df-ntr 17089  df-cls 17090  df-nei 17167  df-lp 17205  df-perf 17206  df-cn 17296  df-cnp 17297  df-haus 17384  df-tx 17599  df-hmeo 17792  df-fil 17883  df-fm 17975  df-flim 17976  df-flf 17977  df-xms 18355  df-ms 18356  df-tms 18357  df-cncf 18913  df-limc 19758  df-dv 19759
  Copyright terms: Public domain W3C validator