MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveflem Structured version   Unicode version

Theorem dveflem 19856
Description: Derivative of the exponential function at 0. The key step in the proof is eftlub 12703, to show that  abs ( exp ( x )  - 
1  -  x )  <_  abs ( x ) ^ 2  x.  (
3  /  4 ). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
dveflem  |-  0
( CC  _D  exp ) 1

Proof of Theorem dveflem
Dummy variables  k  n  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 9077 . . 3  |-  0  e.  CC
2 eqid 2436 . . . . 5  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
32cnfldtop 18811 . . . 4  |-  ( TopOpen ` fld )  e.  Top
42cnfldtopon 18810 . . . . . 6  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
54toponunii 16990 . . . . 5  |-  CC  =  U. ( TopOpen ` fld )
65ntrtop 17127 . . . 4  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( int `  ( TopOpen
` fld
) ) `  CC )  =  CC )
73, 6ax-mp 8 . . 3  |-  ( ( int `  ( TopOpen ` fld )
) `  CC )  =  CC
81, 7eleqtrri 2509 . 2  |-  0  e.  ( ( int `  ( TopOpen
` fld
) ) `  CC )
9 ax-1cn 9041 . . 3  |-  1  e.  CC
10 1rp 10609 . . . . . 6  |-  1  e.  RR+
11 ifcl 3768 . . . . . 6  |-  ( ( x  e.  RR+  /\  1  e.  RR+ )  ->  if ( x  <_  1 ,  x ,  1 )  e.  RR+ )
1210, 11mpan2 653 . . . . 5  |-  ( x  e.  RR+  ->  if ( x  <_  1 ,  x ,  1 )  e.  RR+ )
13 eldifsn 3920 . . . . . . 7  |-  ( w  e.  ( CC  \  { 0 } )  <-> 
( w  e.  CC  /\  w  =/=  0 ) )
14 simprl 733 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  w  e.  CC )
1514subid1d 9393 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  ( w  - 
0 )  =  w )
1615fveq2d 5725 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  ( abs `  (
w  -  0 ) )  =  ( abs `  w ) )
1716breq1d 4215 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  ( ( abs `  ( w  -  0 ) )  <  if ( x  <_  1 ,  x ,  1 )  <-> 
( abs `  w
)  <  if (
x  <_  1 ,  x ,  1 ) ) )
1814abscld 12231 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  ( abs `  w
)  e.  RR )
19 rpre 10611 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
2019adantr 452 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  x  e.  RR )
21 1re 9083 . . . . . . . . . . . 12  |-  1  e.  RR
2221a1i 11 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  1  e.  RR )
23 ltmin 10774 . . . . . . . . . . 11  |-  ( ( ( abs `  w
)  e.  RR  /\  x  e.  RR  /\  1  e.  RR )  ->  (
( abs `  w
)  <  if (
x  <_  1 ,  x ,  1 )  <-> 
( ( abs `  w
)  <  x  /\  ( abs `  w )  <  1 ) ) )
2418, 20, 22, 23syl3anc 1184 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  ( ( abs `  w )  <  if ( x  <_  1 ,  x ,  1 )  <-> 
( ( abs `  w
)  <  x  /\  ( abs `  w )  <  1 ) ) )
2517, 24bitrd 245 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  ( ( abs `  ( w  -  0 ) )  <  if ( x  <_  1 ,  x ,  1 )  <-> 
( ( abs `  w
)  <  x  /\  ( abs `  w )  <  1 ) ) )
26 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( w  e.  CC  /\  w  =/=  0 ) )
2726, 13sylibr 204 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  ->  w  e.  ( CC  \  { 0 } ) )
28 fveq2 5721 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  ( exp `  z )  =  ( exp `  w
) )
2928oveq1d 6089 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  (
( exp `  z
)  -  1 )  =  ( ( exp `  w )  -  1 ) )
30 id 20 . . . . . . . . . . . . . . . 16  |-  ( z  =  w  ->  z  =  w )
3129, 30oveq12d 6092 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  (
( ( exp `  z
)  -  1 )  /  z )  =  ( ( ( exp `  w )  -  1 )  /  w ) )
32 eqid 2436 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( CC  \  { 0 } ) 
|->  ( ( ( exp `  z )  -  1 )  /  z ) )  =  ( z  e.  ( CC  \  { 0 } ) 
|->  ( ( ( exp `  z )  -  1 )  /  z ) )
33 ovex 6099 . . . . . . . . . . . . . . 15  |-  ( ( ( exp `  w
)  -  1 )  /  w )  e. 
_V
3431, 32, 33fvmpt 5799 . . . . . . . . . . . . . 14  |-  ( w  e.  ( CC  \  { 0 } )  ->  ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( ( ( exp `  z )  -  1 )  /  z ) ) `  w )  =  ( ( ( exp `  w )  -  1 )  /  w ) )
3527, 34syl 16 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  =  ( ( ( exp `  w )  -  1 )  /  w ) )
3635oveq1d 6089 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( ( ( exp `  z )  -  1 )  /  z ) ) `  w )  -  1 )  =  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )
3736fveq2d 5725 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( abs `  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  - 
1 ) )  =  ( abs `  (
( ( ( exp `  w )  -  1 )  /  w )  -  1 ) ) )
38 simplrl 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  ->  w  e.  CC )
39 efcl 12678 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  CC  ->  ( exp `  w )  e.  CC )
4038, 39syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( exp `  w
)  e.  CC )
419a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
1  e.  CC )
4240, 41subcld 9404 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( ( exp `  w
)  -  1 )  e.  CC )
43 simplrr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  ->  w  =/=  0 )
4442, 38, 43divcld 9783 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( ( ( exp `  w )  -  1 )  /  w )  e.  CC )
4544, 41subcld 9404 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( ( ( ( exp `  w )  -  1 )  /  w )  -  1 )  e.  CC )
4645abscld 12231 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( abs `  (
( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  e.  RR )
4738abscld 12231 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( abs `  w
)  e.  RR )
48 simpll 731 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  ->  x  e.  RR+ )
4948rpred 10641 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  ->  x  e.  RR )
50 abscl 12076 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  CC  ->  ( abs `  w )  e.  RR )
5150ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( abs `  w
)  e.  RR )
5239ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( exp `  w
)  e.  CC )
53 subcl 9298 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( exp `  w
)  e.  CC  /\  1  e.  CC )  ->  ( ( exp `  w
)  -  1 )  e.  CC )
5452, 9, 53sylancl 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( exp `  w )  -  1 )  e.  CC )
55 simpll 731 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  w  e.  CC )
56 simplr 732 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  w  =/=  0
)
5754, 55, 56divcld 9783 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( exp `  w )  -  1 )  /  w )  e.  CC )
589a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  1  e.  CC )
5957, 58subcld 9404 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 )  e.  CC )
6059abscld 12231 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( abs `  (
( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  e.  RR )
6151, 60remulcld 9109 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( abs `  w )  x.  ( abs `  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )  e.  RR )
6251resqcld 11542 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( abs `  w ) ^ 2 )  e.  RR )
63 3re 10064 . . . . . . . . . . . . . . . . . 18  |-  3  e.  RR
64 4nn 10128 . . . . . . . . . . . . . . . . . 18  |-  4  e.  NN
65 nndivre 10028 . . . . . . . . . . . . . . . . . 18  |-  ( ( 3  e.  RR  /\  4  e.  NN )  ->  ( 3  /  4
)  e.  RR )
6663, 64, 65mp2an 654 . . . . . . . . . . . . . . . . 17  |-  ( 3  /  4 )  e.  RR
67 remulcl 9068 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( abs `  w
) ^ 2 )  e.  RR  /\  (
3  /  4 )  e.  RR )  -> 
( ( ( abs `  w ) ^ 2 )  x.  ( 3  /  4 ) )  e.  RR )
6862, 66, 67sylancl 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( abs `  w ) ^ 2 )  x.  ( 3  /  4
) )  e.  RR )
6954, 55subcld 9404 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( exp `  w )  -  1 )  -  w )  e.  CC )
7069, 55, 56divcan2d 9785 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( w  x.  ( ( ( ( exp `  w )  -  1 )  -  w )  /  w
) )  =  ( ( ( exp `  w
)  -  1 )  -  w ) )
7154, 55, 55, 56divsubdird 9822 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( ( exp `  w
)  -  1 )  -  w )  /  w )  =  ( ( ( ( exp `  w )  -  1 )  /  w )  -  ( w  /  w ) ) )
7255, 56dividd 9781 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( w  /  w )  =  1 )
7372oveq2d 6090 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( ( exp `  w
)  -  1 )  /  w )  -  ( w  /  w
) )  =  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )
7471, 73eqtrd 2468 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( ( exp `  w
)  -  1 )  -  w )  /  w )  =  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )
7574oveq2d 6090 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( w  x.  ( ( ( ( exp `  w )  -  1 )  -  w )  /  w
) )  =  ( w  x.  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )
7652, 58, 55subsub4d 9435 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( exp `  w )  -  1 )  -  w )  =  ( ( exp `  w
)  -  ( 1  +  w ) ) )
77 eqid 2436 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( w ^ n )  / 
( ! `  n
) ) )
78 df-2 10051 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  2  =  ( 1  +  1 )
79 1nn0 10230 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  1  e.  NN0
80 1e0p1 10403 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  1  =  ( 0  +  1 )
81 0nn0 10229 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  e.  NN0
821a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  0  e.  CC )
8377efval2 12679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( w  e.  CC  ->  ( exp `  w )  = 
sum_ k  e.  NN0  ( ( n  e. 
NN0  |->  ( ( w ^ n )  / 
( ! `  n
) ) ) `  k ) )
8483ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( exp `  w
)  =  sum_ k  e.  NN0  ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k ) )
85 nn0uz 10513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  NN0  =  ( ZZ>= `  0 )
8685sumeq1i 12485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  sum_ k  e.  NN0  ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k )  = 
sum_ k  e.  (
ZZ>= `  0 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
)
8784, 86syl6req 2485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  sum_ k  e.  (
ZZ>= `  0 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
)  =  ( exp `  w ) )
8887oveq2d 6090 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( 0  + 
sum_ k  e.  (
ZZ>= `  0 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) )  =  ( 0  +  ( exp `  w ) ) )
8952addid2d 9260 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( 0  +  ( exp `  w
) )  =  ( exp `  w ) )
9088, 89eqtr2d 2469 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( exp `  w
)  =  ( 0  +  sum_ k  e.  (
ZZ>= `  0 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) ) )
91 eft0val 12706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( w  e.  CC  ->  (
( w ^ 0 )  /  ( ! `
 0 ) )  =  1 )
9291ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( w ^ 0 )  / 
( ! `  0
) )  =  1 )
9392oveq2d 6090 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( 0  +  ( ( w ^
0 )  /  ( ! `  0 )
) )  =  ( 0  +  1 ) )
9493, 80syl6eqr 2486 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( 0  +  ( ( w ^
0 )  /  ( ! `  0 )
) )  =  1 )
9577, 80, 81, 55, 82, 90, 94efsep 12704 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( exp `  w
)  =  ( 1  +  sum_ k  e.  (
ZZ>= `  1 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) ) )
96 exp1 11380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( w  e.  CC  ->  (
w ^ 1 )  =  w )
9796ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( w ^
1 )  =  w )
9897oveq1d 6089 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( w ^ 1 )  / 
( ! `  1
) )  =  ( w  /  ( ! `
 1 ) ) )
99 fac1 11563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ! `
 1 )  =  1
10099oveq2i 6085 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( w  /  ( ! ` 
1 ) )  =  ( w  /  1
)
10198, 100syl6eq 2484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( w ^ 1 )  / 
( ! `  1
) )  =  ( w  /  1 ) )
102 div1 9700 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( w  e.  CC  ->  (
w  /  1 )  =  w )
103102ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( w  / 
1 )  =  w )
104101, 103eqtrd 2468 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( w ^ 1 )  / 
( ! `  1
) )  =  w )
105104oveq2d 6090 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( 1  +  ( ( w ^
1 )  /  ( ! `  1 )
) )  =  ( 1  +  w ) )
10677, 78, 79, 55, 58, 95, 105efsep 12704 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( exp `  w
)  =  ( ( 1  +  w )  +  sum_ k  e.  (
ZZ>= `  2 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) ) )
107106eqcomd 2441 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( 1  +  w )  + 
sum_ k  e.  (
ZZ>= `  2 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) )  =  ( exp `  w ) )
108 addcl 9065 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 1  e.  CC  /\  w  e.  CC )  ->  ( 1  +  w
)  e.  CC )
1099, 55, 108sylancr 645 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( 1  +  w )  e.  CC )
110 2nn0 10231 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  2  e.  NN0
11177eftlcl 12701 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( w  e.  CC  /\  2  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
2 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k )  e.  CC )
11255, 110, 111sylancl 644 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  sum_ k  e.  (
ZZ>= `  2 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
)  e.  CC )
11352, 109, 112subaddd 9422 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( exp `  w )  -  ( 1  +  w ) )  = 
sum_ k  e.  (
ZZ>= `  2 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
)  <->  ( ( 1  +  w )  + 
sum_ k  e.  (
ZZ>= `  2 ) ( ( n  e.  NN0  |->  ( ( w ^
n )  /  ( ! `  n )
) ) `  k
) )  =  ( exp `  w ) ) )
114107, 113mpbird 224 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( exp `  w )  -  (
1  +  w ) )  =  sum_ k  e.  ( ZZ>= `  2 )
( ( n  e. 
NN0  |->  ( ( w ^ n )  / 
( ! `  n
) ) ) `  k ) )
11576, 114eqtrd 2468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( exp `  w )  -  1 )  -  w )  =  sum_ k  e.  ( ZZ>= ` 
2 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k ) )
11670, 75, 1153eqtr3d 2476 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( w  x.  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  =  sum_ k  e.  ( ZZ>= ` 
2 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k ) )
117116fveq2d 5725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( abs `  (
w  x.  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )  =  ( abs `  sum_ k  e.  ( ZZ>= ` 
2 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k ) ) )
11855, 59absmuld 12249 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( abs `  (
w  x.  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )  =  ( ( abs `  w )  x.  ( abs `  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) ) )
119117, 118eqtr3d 2470 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( abs `  sum_ k  e.  ( ZZ>= ` 
2 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k ) )  =  ( ( abs `  w )  x.  ( abs `  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) ) )
120 eqid 2436 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN0  |->  ( ( ( abs `  w
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  w ) ^ n )  / 
( ! `  n
) ) )
121 eqid 2436 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  w
) ^ 2 )  /  ( ! ` 
2 ) )  x.  ( ( 1  / 
( 2  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  w ) ^ 2 )  / 
( ! `  2
) )  x.  (
( 1  /  (
2  +  1 ) ) ^ n ) ) )
122 2nn 10126 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  NN
123122a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  2  e.  NN )
12421a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  1  e.  RR )
125 simpr 448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( abs `  w
)  <  1 )
12651, 124, 125ltled 9214 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( abs `  w
)  <_  1 )
12777, 120, 121, 123, 55, 126eftlub 12703 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( abs `  sum_ k  e.  ( ZZ>= ` 
2 ) ( ( n  e.  NN0  |->  ( ( w ^ n )  /  ( ! `  n ) ) ) `
 k ) )  <_  ( ( ( abs `  w ) ^ 2 )  x.  ( ( 2  +  1 )  /  (
( ! `  2
)  x.  2 ) ) ) )
128119, 127eqbrtrrd 4227 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( abs `  w )  x.  ( abs `  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )  <_  ( ( ( abs `  w ) ^ 2 )  x.  ( ( 2  +  1 )  /  (
( ! `  2
)  x.  2 ) ) ) )
129 df-3 10052 . . . . . . . . . . . . . . . . . . 19  |-  3  =  ( 2  +  1 )
130 fac2 11565 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ! `
 2 )  =  2
131130oveq1i 6084 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ! `  2 )  x.  2 )  =  ( 2  x.  2 )
132 2t2e4 10120 . . . . . . . . . . . . . . . . . . . 20  |-  ( 2  x.  2 )  =  4
133131, 132eqtr2i 2457 . . . . . . . . . . . . . . . . . . 19  |-  4  =  ( ( ! `
 2 )  x.  2 )
134129, 133oveq12i 6086 . . . . . . . . . . . . . . . . . 18  |-  ( 3  /  4 )  =  ( ( 2  +  1 )  /  (
( ! `  2
)  x.  2 ) )
135134oveq2i 6085 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  w
) ^ 2 )  x.  ( 3  / 
4 ) )  =  ( ( ( abs `  w ) ^ 2 )  x.  ( ( 2  +  1 )  /  ( ( ! `
 2 )  x.  2 ) ) )
136128, 135syl6breqr 4245 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( abs `  w )  x.  ( abs `  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )  <_  ( ( ( abs `  w ) ^ 2 )  x.  ( 3  /  4
) ) )
13766a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( 3  / 
4 )  e.  RR )
13851sqge0d 11543 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  0  <_  (
( abs `  w
) ^ 2 ) )
139 3lt4 10138 . . . . . . . . . . . . . . . . . . . . . 22  |-  3  <  4
140 4cn 10067 . . . . . . . . . . . . . . . . . . . . . . 23  |-  4  e.  CC
141140mulid1i 9085 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 4  x.  1 )  =  4
142139, 141breqtrri 4230 . . . . . . . . . . . . . . . . . . . . 21  |-  3  <  ( 4  x.  1 )
143 4re 10066 . . . . . . . . . . . . . . . . . . . . . . 23  |-  4  e.  RR
144 4pos 10079 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  <  4
145143, 144pm3.2i 442 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 4  e.  RR  /\  0  <  4 )
146 ltdivmul 9875 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 3  e.  RR  /\  1  e.  RR  /\  (
4  e.  RR  /\  0  <  4 ) )  ->  ( ( 3  /  4 )  <  1  <->  3  <  (
4  x.  1 ) ) )
14763, 21, 145, 146mp3an 1279 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 3  /  4 )  <  1  <->  3  <  ( 4  x.  1 ) )
148142, 147mpbir 201 . . . . . . . . . . . . . . . . . . . 20  |-  ( 3  /  4 )  <  1
14966, 21, 148ltleii 9189 . . . . . . . . . . . . . . . . . . 19  |-  ( 3  /  4 )  <_ 
1
150149a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( 3  / 
4 )  <_  1
)
151137, 124, 62, 138, 150lemul2ad 9944 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( abs `  w ) ^ 2 )  x.  ( 3  /  4
) )  <_  (
( ( abs `  w
) ^ 2 )  x.  1 ) )
15251recnd 9107 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( abs `  w
)  e.  CC )
153152sqcld 11514 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( abs `  w ) ^ 2 )  e.  CC )
154153mulid1d 9098 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( abs `  w ) ^ 2 )  x.  1 )  =  ( ( abs `  w
) ^ 2 ) )
155151, 154breqtrd 4229 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( ( abs `  w ) ^ 2 )  x.  ( 3  /  4
) )  <_  (
( abs `  w
) ^ 2 ) )
15661, 68, 62, 136, 155letrd 9220 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( abs `  w )  x.  ( abs `  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )  <_  ( ( abs `  w ) ^ 2 ) )
157152sqvald 11513 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( abs `  w ) ^ 2 )  =  ( ( abs `  w )  x.  ( abs `  w
) ) )
158156, 157breqtrd 4229 . . . . . . . . . . . . . 14  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( abs `  w )  x.  ( abs `  ( ( ( ( exp `  w
)  -  1 )  /  w )  - 
1 ) ) )  <_  ( ( abs `  w )  x.  ( abs `  w ) ) )
159 absgt0 12121 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  CC  ->  (
w  =/=  0  <->  0  <  ( abs `  w
) ) )
160159ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( w  =/=  0  <->  0  <  ( abs `  w ) ) )
16156, 160mpbid 202 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  0  <  ( abs `  w ) )
16251, 161elrpd 10639 . . . . . . . . . . . . . . 15  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( abs `  w
)  e.  RR+ )
16360, 51, 162lemul2d 10681 . . . . . . . . . . . . . 14  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( ( abs `  ( ( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  <_  ( abs `  w )  <->  ( ( abs `  w )  x.  ( abs `  (
( ( ( exp `  w )  -  1 )  /  w )  -  1 ) ) )  <_  ( ( abs `  w )  x.  ( abs `  w
) ) ) )
164158, 163mpbird 224 . . . . . . . . . . . . 13  |-  ( ( ( w  e.  CC  /\  w  =/=  0 )  /\  ( abs `  w
)  <  1 )  ->  ( abs `  (
( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  <_  ( abs `  w
) )
165164ad2ant2l 727 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( abs `  (
( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  <_  ( abs `  w
) )
166 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( abs `  w
)  <  x )
16746, 47, 49, 165, 166lelttrd 9221 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( abs `  (
( ( ( exp `  w )  -  1 )  /  w )  -  1 ) )  <  x )
16837, 167eqbrtrd 4225 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  ( w  e.  CC  /\  w  =/=  0 ) )  /\  ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 ) )  -> 
( abs `  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  - 
1 ) )  < 
x )
169168ex 424 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  ( ( ( abs `  w )  <  x  /\  ( abs `  w )  <  1 )  ->  ( abs `  ( ( ( z  e.  ( CC 
\  { 0 } )  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) `  w )  -  1 ) )  <  x
) )
17025, 169sylbid 207 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  ( ( abs `  ( w  -  0 ) )  <  if ( x  <_  1 ,  x ,  1 )  ->  ( abs `  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  - 
1 ) )  < 
x ) )
171170adantld 454 . . . . . . 7  |-  ( ( x  e.  RR+  /\  (
w  e.  CC  /\  w  =/=  0 ) )  ->  ( ( w  =/=  0  /\  ( abs `  ( w  - 
0 ) )  < 
if ( x  <_ 
1 ,  x ,  1 ) )  -> 
( abs `  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  - 
1 ) )  < 
x ) )
17213, 171sylan2b 462 . . . . . 6  |-  ( ( x  e.  RR+  /\  w  e.  ( CC  \  {
0 } ) )  ->  ( ( w  =/=  0  /\  ( abs `  ( w  - 
0 ) )  < 
if ( x  <_ 
1 ,  x ,  1 ) )  -> 
( abs `  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  - 
1 ) )  < 
x ) )
173172ralrimiva 2782 . . . . 5  |-  ( x  e.  RR+  ->  A. w  e.  ( CC  \  {
0 } ) ( ( w  =/=  0  /\  ( abs `  (
w  -  0 ) )  <  if ( x  <_  1 ,  x ,  1 ) )  ->  ( abs `  ( ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( ( ( exp `  z )  -  1 )  /  z ) ) `  w )  -  1 ) )  <  x ) )
174 breq2 4209 . . . . . . . . 9  |-  ( y  =  if ( x  <_  1 ,  x ,  1 )  -> 
( ( abs `  (
w  -  0 ) )  <  y  <->  ( abs `  ( w  -  0 ) )  <  if ( x  <_  1 ,  x ,  1 ) ) )
175174anbi2d 685 . . . . . . . 8  |-  ( y  =  if ( x  <_  1 ,  x ,  1 )  -> 
( ( w  =/=  0  /\  ( abs `  ( w  -  0 ) )  <  y
)  <->  ( w  =/=  0  /\  ( abs `  ( w  -  0 ) )  <  if ( x  <_  1 ,  x ,  1 ) ) ) )
176175imbi1d 309 . . . . . . 7  |-  ( y  =  if ( x  <_  1 ,  x ,  1 )  -> 
( ( ( w  =/=  0  /\  ( abs `  ( w  - 
0 ) )  < 
y )  ->  ( abs `  ( ( ( z  e.  ( CC 
\  { 0 } )  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) `  w )  -  1 ) )  <  x
)  <->  ( ( w  =/=  0  /\  ( abs `  ( w  - 
0 ) )  < 
if ( x  <_ 
1 ,  x ,  1 ) )  -> 
( abs `  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  - 
1 ) )  < 
x ) ) )
177176ralbidv 2718 . . . . . 6  |-  ( y  =  if ( x  <_  1 ,  x ,  1 )  -> 
( A. w  e.  ( CC  \  {
0 } ) ( ( w  =/=  0  /\  ( abs `  (
w  -  0 ) )  <  y )  ->  ( abs `  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  - 
1 ) )  < 
x )  <->  A. w  e.  ( CC  \  {
0 } ) ( ( w  =/=  0  /\  ( abs `  (
w  -  0 ) )  <  if ( x  <_  1 ,  x ,  1 ) )  ->  ( abs `  ( ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( ( ( exp `  z )  -  1 )  /  z ) ) `  w )  -  1 ) )  <  x ) ) )
178177rspcev 3045 . . . . 5  |-  ( ( if ( x  <_ 
1 ,  x ,  1 )  e.  RR+  /\ 
A. w  e.  ( CC  \  { 0 } ) ( ( w  =/=  0  /\  ( abs `  (
w  -  0 ) )  <  if ( x  <_  1 ,  x ,  1 ) )  ->  ( abs `  ( ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( ( ( exp `  z )  -  1 )  /  z ) ) `  w )  -  1 ) )  <  x ) )  ->  E. y  e.  RR+  A. w  e.  ( CC 
\  { 0 } ) ( ( w  =/=  0  /\  ( abs `  ( w  - 
0 ) )  < 
y )  ->  ( abs `  ( ( ( z  e.  ( CC 
\  { 0 } )  |->  ( ( ( exp `  z )  -  1 )  / 
z ) ) `  w )  -  1 ) )  <  x
) )
17912, 173, 178syl2anc 643 . . . 4  |-  ( x  e.  RR+  ->  E. y  e.  RR+  A. w  e.  ( CC  \  {
0 } ) ( ( w  =/=  0  /\  ( abs `  (
w  -  0 ) )  <  y )  ->  ( abs `  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  - 
1 ) )  < 
x ) )
180179rgen 2764 . . 3  |-  A. x  e.  RR+  E. y  e.  RR+  A. w  e.  ( CC  \  { 0 } ) ( ( w  =/=  0  /\  ( abs `  (
w  -  0 ) )  <  y )  ->  ( abs `  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  - 
1 ) )  < 
x )
181 eldifi 3462 . . . . . . . . . 10  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  e.  CC )
182 efcl 12678 . . . . . . . . . 10  |-  ( z  e.  CC  ->  ( exp `  z )  e.  CC )
183181, 182syl 16 . . . . . . . . 9  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( exp `  z
)  e.  CC )
1849a1i 11 . . . . . . . . 9  |-  ( z  e.  ( CC  \  { 0 } )  ->  1  e.  CC )
185183, 184subcld 9404 . . . . . . . 8  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( ( exp `  z )  -  1 )  e.  CC )
186 eldifsni 3921 . . . . . . . 8  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  =/=  0
)
187185, 181, 186divcld 9783 . . . . . . 7  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( ( ( exp `  z )  -  1 )  / 
z )  e.  CC )
18832, 187fmpti 5885 . . . . . 6  |-  ( z  e.  ( CC  \  { 0 } ) 
|->  ( ( ( exp `  z )  -  1 )  /  z ) ) : ( CC 
\  { 0 } ) --> CC
189188a1i 11 . . . . 5  |-  (  T. 
->  ( z  e.  ( CC  \  { 0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) : ( CC  \  { 0 } ) --> CC )
190 difssd 3468 . . . . 5  |-  (  T. 
->  ( CC  \  {
0 } )  C_  CC )
1911a1i 11 . . . . 5  |-  (  T. 
->  0  e.  CC )
192189, 190, 191ellimc3 19759 . . . 4  |-  (  T. 
->  ( 1  e.  ( ( z  e.  ( CC  \  { 0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) lim
CC  0 )  <->  ( 1  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR+  A. w  e.  ( CC  \  {
0 } ) ( ( w  =/=  0  /\  ( abs `  (
w  -  0 ) )  <  y )  ->  ( abs `  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  - 
1 ) )  < 
x ) ) ) )
193192trud 1332 . . 3  |-  ( 1  e.  ( ( z  e.  ( CC  \  { 0 } ) 
|->  ( ( ( exp `  z )  -  1 )  /  z ) ) lim CC  0 )  <-> 
( 1  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR+  A. w  e.  ( CC  \  {
0 } ) ( ( w  =/=  0  /\  ( abs `  (
w  -  0 ) )  <  y )  ->  ( abs `  (
( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) `
 w )  - 
1 ) )  < 
x ) ) )
1949, 180, 193mpbir2an 887 . 2  |-  1  e.  ( ( z  e.  ( CC  \  {
0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) lim
CC  0 )
1955restid 13654 . . . . . 6  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
1963, 195ax-mp 8 . . . . 5  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
197196eqcomi 2440 . . . 4  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
198181subid1d 9393 . . . . . . 7  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( z  - 
0 )  =  z )
199198oveq2d 6090 . . . . . 6  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( ( ( exp `  z )  -  ( exp `  0
) )  /  (
z  -  0 ) )  =  ( ( ( exp `  z
)  -  ( exp `  0 ) )  /  z ) )
200 ef0 12686 . . . . . . . 8  |-  ( exp `  0 )  =  1
201200oveq2i 6085 . . . . . . 7  |-  ( ( exp `  z )  -  ( exp `  0
) )  =  ( ( exp `  z
)  -  1 )
202201oveq1i 6084 . . . . . 6  |-  ( ( ( exp `  z
)  -  ( exp `  0 ) )  /  z )  =  ( ( ( exp `  z )  -  1 )  /  z )
203199, 202syl6req 2485 . . . . 5  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( ( ( exp `  z )  -  1 )  / 
z )  =  ( ( ( exp `  z
)  -  ( exp `  0 ) )  /  ( z  - 
0 ) ) )
204203mpteq2ia 4284 . . . 4  |-  ( z  e.  ( CC  \  { 0 } ) 
|->  ( ( ( exp `  z )  -  1 )  /  z ) )  =  ( z  e.  ( CC  \  { 0 } ) 
|->  ( ( ( exp `  z )  -  ( exp `  0 ) )  /  ( z  - 
0 ) ) )
205 ssid 3360 . . . . 5  |-  CC  C_  CC
206205a1i 11 . . . 4  |-  (  T. 
->  CC  C_  CC )
207 eff 12677 . . . . 5  |-  exp : CC
--> CC
208207a1i 11 . . . 4  |-  (  T. 
->  exp : CC --> CC )
209197, 2, 204, 206, 208, 206eldv 19778 . . 3  |-  (  T. 
->  ( 0 ( CC 
_D  exp ) 1  <->  (
0  e.  ( ( int `  ( TopOpen ` fld )
) `  CC )  /\  1  e.  (
( z  e.  ( CC  \  { 0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) lim
CC  0 ) ) ) )
210209trud 1332 . 2  |-  ( 0 ( CC  _D  exp ) 1  <->  ( 0  e.  ( ( int `  ( TopOpen ` fld ) ) `  CC )  /\  1  e.  ( ( z  e.  ( CC  \  { 0 } )  |->  ( ( ( exp `  z
)  -  1 )  /  z ) ) lim
CC  0 ) ) )
2118, 194, 210mpbir2an 887 1  |-  0
( CC  _D  exp ) 1
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    T. wtru 1325    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2698   E.wrex 2699    \ cdif 3310    C_ wss 3313   ifcif 3732   {csn 3807   class class class wbr 4205    e. cmpt 4259   -->wf 5443   ` cfv 5447  (class class class)co 6074   CCcc 8981   RRcr 8982   0cc0 8983   1c1 8984    + caddc 8986    x. cmul 8988    < clt 9113    <_ cle 9114    - cmin 9284    / cdiv 9670   NNcn 9993   2c2 10042   3c3 10043   4c4 10044   NN0cn0 10214   ZZ>=cuz 10481   RR+crp 10605   ^cexp 11375   !cfa 11559   abscabs 12032   sum_csu 12472   expce 12657   ↾t crest 13641   TopOpenctopn 13642  ℂfldccnfld 16696   Topctop 16951   intcnt 17074   lim CC climc 19742    _D cdv 19743
This theorem is referenced by:  dvef  19857
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061  ax-addf 9062  ax-mulf 9063
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-oadd 6721  df-er 6898  df-map 7013  df-pm 7014  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-fi 7409  df-sup 7439  df-oi 7472  df-card 7819  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-q 10568  df-rp 10606  df-xneg 10703  df-xadd 10704  df-xmul 10705  df-ico 10915  df-fz 11037  df-fzo 11129  df-fl 11195  df-seq 11317  df-exp 11376  df-fac 11560  df-hash 11612  df-shft 11875  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-limsup 12258  df-clim 12275  df-rlim 12276  df-sum 12473  df-ef 12663  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-plusg 13535  df-mulr 13536  df-starv 13537  df-tset 13541  df-ple 13542  df-ds 13544  df-unif 13545  df-rest 13643  df-topn 13644  df-topgen 13660  df-psmet 16687  df-xmet 16688  df-met 16689  df-bl 16690  df-mopn 16691  df-cnfld 16697  df-top 16956  df-bases 16958  df-topon 16959  df-topsp 16960  df-ntr 17077  df-cnp 17285  df-xms 18343  df-ms 18344  df-limc 19746  df-dv 19747
  Copyright terms: Public domain W3C validator