Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvelimvOLD Structured version   Unicode version

Theorem dvelimvOLD 2028
 Description: Obsolete proof of dvelimv 2074 as of 17-Feb-2018. (Contributed by NM, 25-Jul-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
dvelimvOLD.1
Assertion
Ref Expression
dvelimvOLD
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem dvelimvOLD
StepHypRef Expression
1 ax-17 1626 . . . . . 6
21a1d 23 . . . . . 6
31, 2alrimih 1574 . . . . 5
4 sp 1763 . . . . . . . 8
5 dvelimvOLD.1 . . . . . . . 8
64, 5syl5ibr 213 . . . . . . 7
76a2i 13 . . . . . 6
87alimi 1568 . . . . 5
93, 8syl 16 . . . 4
10 ax10lem3OLD 2027 . . . . . . . 8
1110con3i 129 . . . . . . 7
12 hbn1 1745 . . . . . . . 8
13 ax10lem3OLD 2027 . . . . . . . . 9
1413con3i 129 . . . . . . . 8
1512, 14alrimih 1574 . . . . . . 7
1611, 15syl 16 . . . . . 6
17 ax-17 1626 . . . . . 6
1816, 17hban 1850 . . . . 5
19 hbn1 1745 . . . . . . 7
20 hbn1 1745 . . . . . . 7
2119, 20hban 1850 . . . . . 6
22 ax12o 2010 . . . . . . 7
2322imp 419 . . . . . 6
24 a17d 1627 . . . . . 6
2521, 23, 24hbimd 1834 . . . . 5
2618, 25hbald 1755 . . . 4
275biimpd 199 . . . . . . . . 9
2827a2i 13 . . . . . . . 8
2928alimi 1568 . . . . . . 7
30 ax9v 1667 . . . . . . . 8
31 con3 128 . . . . . . . . 9
3231al2imi 1570 . . . . . . . 8
3330, 32mtoi 171 . . . . . . 7
3429, 33syl 16 . . . . . 6
35 ax-17 1626 . . . . . 6
3634, 35nsyl2 121 . . . . 5
3736alimi 1568 . . . 4
389, 26, 37syl56 32 . . 3
3938expcom 425 . 2
40 sp 1763 . . . 4
41 ax-11 1761 . . . 4
4240, 1, 41syl2im 36 . . 3
43 pm2.27 37 . . . 4
4443al2imi 1570 . . 3
4542, 44syld 42 . 2
4639, 45pm2.61d2 154 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wa 359  wal 1549 This theorem is referenced by:  dveeq2OLD  2029  ax10lem4OLD  2030 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator