MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvexp3 Structured version   Unicode version

Theorem dvexp3 19863
Description: Derivative of an exponential of integer exponent. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
dvexp3  |-  ( N  e.  ZZ  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( x ^ N ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
Distinct variable group:    x, N

Proof of Theorem dvexp3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 10296 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 cnex 9072 . . . . . . 7  |-  CC  e.  _V
32prid2 3914 . . . . . 6  |-  CC  e.  { RR ,  CC }
43a1i 11 . . . . 5  |-  ( N  e.  NN0  ->  CC  e.  { RR ,  CC }
)
5 expcl 11400 . . . . . 6  |-  ( ( x  e.  CC  /\  N  e.  NN0 )  -> 
( x ^ N
)  e.  CC )
65ancoms 441 . . . . 5  |-  ( ( N  e.  NN0  /\  x  e.  CC )  ->  ( x ^ N
)  e.  CC )
7 c0ex 9086 . . . . . . 7  |-  0  e.  _V
8 ovex 6107 . . . . . . 7  |-  ( N  x.  ( x ^
( N  -  1 ) ) )  e. 
_V
97, 8ifex 3798 . . . . . 6  |-  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^
( N  -  1 ) ) ) )  e.  _V
109a1i 11 . . . . 5  |-  ( ( N  e.  NN0  /\  x  e.  CC )  ->  if ( N  =  0 ,  0 ,  ( N  x.  (
x ^ ( N  -  1 ) ) ) )  e.  _V )
11 dvexp2 19841 . . . . 5  |-  ( N  e.  NN0  ->  ( CC 
_D  ( x  e.  CC  |->  ( x ^ N ) ) )  =  ( x  e.  CC  |->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) ) )
12 difssd 3476 . . . . 5  |-  ( N  e.  NN0  ->  ( CC 
\  { 0 } )  C_  CC )
13 eqid 2437 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1413cnfldtop 18819 . . . . . . 7  |-  ( TopOpen ` fld )  e.  Top
1513cnfldtopon 18818 . . . . . . . . 9  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
1615toponunii 16998 . . . . . . . 8  |-  CC  =  U. ( TopOpen ` fld )
1716restid 13662 . . . . . . 7  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
1814, 17ax-mp 8 . . . . . 6  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
1918eqcomi 2441 . . . . 5  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
2013cnfldhaus 18820 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  Haus
21 0cn 9085 . . . . . . . 8  |-  0  e.  CC
2216sncld 17436 . . . . . . . 8  |-  ( ( ( TopOpen ` fld )  e.  Haus  /\  0  e.  CC )  ->  { 0 }  e.  ( Clsd `  ( TopOpen
` fld
) ) )
2320, 21, 22mp2an 655 . . . . . . 7  |-  { 0 }  e.  ( Clsd `  ( TopOpen ` fld ) )
2416cldopn 17096 . . . . . . 7  |-  ( { 0 }  e.  (
Clsd `  ( TopOpen ` fld ) )  ->  ( CC  \  { 0 } )  e.  ( TopOpen ` fld )
)
2523, 24ax-mp 8 . . . . . 6  |-  ( CC 
\  { 0 } )  e.  ( TopOpen ` fld )
2625a1i 11 . . . . 5  |-  ( N  e.  NN0  ->  ( CC 
\  { 0 } )  e.  ( TopOpen ` fld )
)
274, 6, 10, 11, 12, 19, 13, 26dvmptres 19850 . . . 4  |-  ( N  e.  NN0  ->  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( x ^ N ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) ) )
28 ifid 3772 . . . . . 6  |-  if ( N  =  0 ,  ( N  x.  (
x ^ ( N  -  1 ) ) ) ,  ( N  x.  ( x ^
( N  -  1 ) ) ) )  =  ( N  x.  ( x ^ ( N  -  1 ) ) )
29 id 21 . . . . . . . . 9  |-  ( N  =  0  ->  N  =  0 )
30 oveq1 6089 . . . . . . . . . 10  |-  ( N  =  0  ->  ( N  -  1 )  =  ( 0  -  1 ) )
3130oveq2d 6098 . . . . . . . . 9  |-  ( N  =  0  ->  (
x ^ ( N  -  1 ) )  =  ( x ^
( 0  -  1 ) ) )
3229, 31oveq12d 6100 . . . . . . . 8  |-  ( N  =  0  ->  ( N  x.  ( x ^ ( N  - 
1 ) ) )  =  ( 0  x.  ( x ^ (
0  -  1 ) ) ) )
33 eldifsn 3928 . . . . . . . . . . 11  |-  ( x  e.  ( CC  \  { 0 } )  <-> 
( x  e.  CC  /\  x  =/=  0 ) )
34 0z 10294 . . . . . . . . . . . . 13  |-  0  e.  ZZ
35 peano2zm 10321 . . . . . . . . . . . . 13  |-  ( 0  e.  ZZ  ->  (
0  -  1 )  e.  ZZ )
3634, 35ax-mp 8 . . . . . . . . . . . 12  |-  ( 0  -  1 )  e.  ZZ
37 expclz 11407 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  x  =/=  0  /\  (
0  -  1 )  e.  ZZ )  -> 
( x ^ (
0  -  1 ) )  e.  CC )
3836, 37mp3an3 1269 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( x ^ (
0  -  1 ) )  e.  CC )
3933, 38sylbi 189 . . . . . . . . . 10  |-  ( x  e.  ( CC  \  { 0 } )  ->  ( x ^
( 0  -  1 ) )  e.  CC )
4039adantl 454 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  x  e.  ( CC  \  { 0 } ) )  ->  ( x ^ ( 0  -  1 ) )  e.  CC )
4140mul02d 9265 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  x  e.  ( CC  \  { 0 } ) )  ->  ( 0  x.  ( x ^
( 0  -  1 ) ) )  =  0 )
4232, 41sylan9eqr 2491 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  x  e.  ( CC 
\  { 0 } ) )  /\  N  =  0 )  -> 
( N  x.  (
x ^ ( N  -  1 ) ) )  =  0 )
4342ifeq1da 3765 . . . . . 6  |-  ( ( N  e.  NN0  /\  x  e.  ( CC  \  { 0 } ) )  ->  if ( N  =  0 , 
( N  x.  (
x ^ ( N  -  1 ) ) ) ,  ( N  x.  ( x ^
( N  -  1 ) ) ) )  =  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
4428, 43syl5eqr 2483 . . . . 5  |-  ( ( N  e.  NN0  /\  x  e.  ( CC  \  { 0 } ) )  ->  ( N  x.  ( x ^ ( N  -  1 ) ) )  =  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  - 
1 ) ) ) ) )
4544mpteq2dva 4296 . . . 4  |-  ( N  e.  NN0  ->  ( x  e.  ( CC  \  { 0 } ) 
|->  ( N  x.  (
x ^ ( N  -  1 ) ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  if ( N  =  0 ,  0 ,  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) ) )
4627, 45eqtr4d 2472 . . 3  |-  ( N  e.  NN0  ->  ( CC 
_D  ( x  e.  ( CC  \  {
0 } )  |->  ( x ^ N ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
47 eldifi 3470 . . . . . . . 8  |-  ( x  e.  ( CC  \  { 0 } )  ->  x  e.  CC )
4847adantl 454 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  e.  CC )
49 simpll 732 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  ->  N  e.  RR )
5049recnd 9115 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  ->  N  e.  CC )
51 nnnn0 10229 . . . . . . . 8  |-  ( -u N  e.  NN  ->  -u N  e.  NN0 )
5251ad2antlr 709 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  ->  -u N  e.  NN0 )
53 expneg2 11391 . . . . . . 7  |-  ( ( x  e.  CC  /\  N  e.  CC  /\  -u N  e.  NN0 )  ->  (
x ^ N )  =  ( 1  / 
( x ^ -u N
) ) )
5448, 50, 52, 53syl3anc 1185 . . . . . 6  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x ^ N
)  =  ( 1  /  ( x ^ -u N ) ) )
5554mpteq2dva 4296 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( x  e.  ( CC  \  {
0 } )  |->  ( x ^ N ) )  =  ( x  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  (
x ^ -u N
) ) ) )
5655oveq2d 6098 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( x ^ N ) ) )  =  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( 1  / 
( x ^ -u N
) ) ) ) )
573a1i 11 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  CC  e.  { RR ,  CC } )
58 eldifsni 3929 . . . . . . . 8  |-  ( x  e.  ( CC  \  { 0 } )  ->  x  =/=  0
)
5958adantl 454 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  ->  x  =/=  0 )
60 nnz 10304 . . . . . . . 8  |-  ( -u N  e.  NN  ->  -u N  e.  ZZ )
6160ad2antlr 709 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  ->  -u N  e.  ZZ )
6248, 59, 61expclzd 11529 . . . . . 6  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x ^ -u N
)  e.  CC )
6348, 59, 61expne0d 11530 . . . . . 6  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x ^ -u N
)  =/=  0 )
64 eldifsn 3928 . . . . . 6  |-  ( ( x ^ -u N
)  e.  ( CC 
\  { 0 } )  <->  ( ( x ^ -u N )  e.  CC  /\  (
x ^ -u N
)  =/=  0 ) )
6562, 63, 64sylanbrc 647 . . . . 5  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x ^ -u N
)  e.  ( CC 
\  { 0 } ) )
66 ovex 6107 . . . . . 6  |-  ( -u N  x.  ( x ^ ( -u N  -  1 ) ) )  e.  _V
6766a1i 11 . . . . 5  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u N  x.  (
x ^ ( -u N  -  1 ) ) )  e.  _V )
68 simpr 449 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  y  e.  ( CC  \  { 0 } ) )  -> 
y  e.  ( CC 
\  { 0 } ) )
69 eldifsn 3928 . . . . . . 7  |-  ( y  e.  ( CC  \  { 0 } )  <-> 
( y  e.  CC  /\  y  =/=  0 ) )
7068, 69sylib 190 . . . . . 6  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  y  e.  ( CC  \  { 0 } ) )  -> 
( y  e.  CC  /\  y  =/=  0 ) )
71 reccl 9686 . . . . . 6  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( 1  /  y
)  e.  CC )
7270, 71syl 16 . . . . 5  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  y  e.  ( CC  \  { 0 } ) )  -> 
( 1  /  y
)  e.  CC )
73 negex 9305 . . . . . 6  |-  -u (
1  /  ( y ^ 2 ) )  e.  _V
7473a1i 11 . . . . 5  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  y  e.  ( CC  \  { 0 } ) )  ->  -u ( 1  /  (
y ^ 2 ) )  e.  _V )
75 simpr 449 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  CC )  ->  x  e.  CC )
7651ad2antlr 709 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  CC )  ->  -u N  e.  NN0 )
7775, 76expcld 11524 . . . . . 6  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  CC )  ->  ( x ^ -u N )  e.  CC )
7866a1i 11 . . . . . 6  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  CC )  ->  ( -u N  x.  ( x ^ ( -u N  -  1 ) ) )  e.  _V )
79 dvexp 19840 . . . . . . 7  |-  ( -u N  e.  NN  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ -u N ) ) )  =  ( x  e.  CC  |->  (
-u N  x.  (
x ^ ( -u N  -  1 ) ) ) ) )
8079adantl 454 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( CC  _D  ( x  e.  CC  |->  ( x ^ -u N
) ) )  =  ( x  e.  CC  |->  ( -u N  x.  (
x ^ ( -u N  -  1 ) ) ) ) )
81 difssd 3476 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( CC  \  { 0 } ) 
C_  CC )
8225a1i 11 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( CC  \  { 0 } )  e.  ( TopOpen ` fld ) )
8357, 77, 78, 80, 81, 19, 13, 82dvmptres 19850 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( x ^ -u N ) ) )  =  ( x  e.  ( CC  \  {
0 } )  |->  (
-u N  x.  (
x ^ ( -u N  -  1 ) ) ) ) )
84 ax-1cn 9049 . . . . . 6  |-  1  e.  CC
85 dvrec 19842 . . . . . 6  |-  ( 1  e.  CC  ->  ( CC  _D  ( y  e.  ( CC  \  {
0 } )  |->  ( 1  /  y ) ) )  =  ( y  e.  ( CC 
\  { 0 } )  |->  -u ( 1  / 
( y ^ 2 ) ) ) )
8684, 85mp1i 12 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( CC  _D  ( y  e.  ( CC  \  { 0 } )  |->  ( 1  /  y ) ) )  =  ( y  e.  ( CC  \  { 0 } ) 
|->  -u ( 1  / 
( y ^ 2 ) ) ) )
87 oveq2 6090 . . . . 5  |-  ( y  =  ( x ^ -u N )  ->  (
1  /  y )  =  ( 1  / 
( x ^ -u N
) ) )
88 oveq1 6089 . . . . . . 7  |-  ( y  =  ( x ^ -u N )  ->  (
y ^ 2 )  =  ( ( x ^ -u N ) ^ 2 ) )
8988oveq2d 6098 . . . . . 6  |-  ( y  =  ( x ^ -u N )  ->  (
1  /  ( y ^ 2 ) )  =  ( 1  / 
( ( x ^ -u N ) ^ 2 ) ) )
9089negeqd 9301 . . . . 5  |-  ( y  =  ( x ^ -u N )  ->  -u (
1  /  ( y ^ 2 ) )  =  -u ( 1  / 
( ( x ^ -u N ) ^ 2 ) ) )
9157, 57, 65, 67, 72, 74, 83, 86, 87, 90dvmptco 19859 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( 1  / 
( x ^ -u N
) ) ) )  =  ( x  e.  ( CC  \  {
0 } )  |->  (
-u ( 1  / 
( ( x ^ -u N ) ^ 2 ) )  x.  ( -u N  x.  ( x ^ ( -u N  -  1 ) ) ) ) ) )
92 2z 10313 . . . . . . . . . . . 12  |-  2  e.  ZZ
9392a1i 11 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
2  e.  ZZ )
94 expmulz 11427 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( -u N  e.  ZZ  /\  2  e.  ZZ ) )  -> 
( x ^ ( -u N  x.  2 ) )  =  ( ( x ^ -u N
) ^ 2 ) )
9548, 59, 61, 93, 94syl22anc 1186 . . . . . . . . . 10  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x ^ ( -u N  x.  2 ) )  =  ( ( x ^ -u N
) ^ 2 ) )
9695eqcomd 2442 . . . . . . . . 9  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( x ^ -u N ) ^ 2 )  =  ( x ^ ( -u N  x.  2 ) ) )
9796oveq2d 6098 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( 1  /  (
( x ^ -u N
) ^ 2 ) )  =  ( 1  /  ( x ^
( -u N  x.  2 ) ) ) )
9897negeqd 9301 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  ->  -u ( 1  /  (
( x ^ -u N
) ^ 2 ) )  =  -u (
1  /  ( x ^ ( -u N  x.  2 ) ) ) )
99 peano2zm 10321 . . . . . . . . . 10  |-  ( -u N  e.  ZZ  ->  (
-u N  -  1 )  e.  ZZ )
10061, 99syl 16 . . . . . . . . 9  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u N  -  1 )  e.  ZZ )
10148, 59, 100expclzd 11529 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x ^ ( -u N  -  1 ) )  e.  CC )
10250, 101mulneg1d 9487 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u N  x.  (
x ^ ( -u N  -  1 ) ) )  =  -u ( N  x.  (
x ^ ( -u N  -  1 ) ) ) )
10398, 102oveq12d 6100 . . . . . 6  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u ( 1  / 
( ( x ^ -u N ) ^ 2 ) )  x.  ( -u N  x.  ( x ^ ( -u N  -  1 ) ) ) )  =  (
-u ( 1  / 
( x ^ ( -u N  x.  2 ) ) )  x.  -u ( N  x.  ( x ^ ( -u N  -  1 ) ) ) ) )
104 zmulcl 10325 . . . . . . . . . 10  |-  ( (
-u N  e.  ZZ  /\  2  e.  ZZ )  ->  ( -u N  x.  2 )  e.  ZZ )
10561, 92, 104sylancl 645 . . . . . . . . 9  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u N  x.  2 )  e.  ZZ )
10648, 59, 105expclzd 11529 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x ^ ( -u N  x.  2 ) )  e.  CC )
10748, 59, 105expne0d 11530 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x ^ ( -u N  x.  2 ) )  =/=  0 )
108106, 107reccld 9784 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( 1  /  (
x ^ ( -u N  x.  2 ) ) )  e.  CC )
10950, 101mulcld 9109 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( N  x.  (
x ^ ( -u N  -  1 ) ) )  e.  CC )
110108, 109mul2negd 9489 . . . . . 6  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u ( 1  / 
( x ^ ( -u N  x.  2 ) ) )  x.  -u ( N  x.  ( x ^ ( -u N  -  1 ) ) ) )  =  ( ( 1  /  (
x ^ ( -u N  x.  2 ) ) )  x.  ( N  x.  ( x ^ ( -u N  -  1 ) ) ) ) )
111108, 50, 101mul12d 9276 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( 1  / 
( x ^ ( -u N  x.  2 ) ) )  x.  ( N  x.  ( x ^ ( -u N  -  1 ) ) ) )  =  ( N  x.  ( ( 1  /  ( x ^ ( -u N  x.  2 ) ) )  x.  ( x ^
( -u N  -  1 ) ) ) ) )
11248, 59, 105, 100expsubd 11535 . . . . . . . . 9  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x ^ (
( -u N  -  1 )  -  ( -u N  x.  2 ) ) )  =  ( ( x ^ ( -u N  -  1 ) )  /  ( x ^ ( -u N  x.  2 ) ) ) )
113 nncn 10009 . . . . . . . . . . . . 13  |-  ( -u N  e.  NN  ->  -u N  e.  CC )
114113ad2antlr 709 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  ->  -u N  e.  CC )
11584a1i 11 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
1  e.  CC )
116105zcnd 10377 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u N  x.  2 )  e.  CC )
117114, 115, 116sub32d 9444 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( -u N  -  1 )  -  ( -u N  x.  2 ) )  =  ( ( -u N  -  ( -u N  x.  2 ) )  -  1 ) )
118114times2d 10212 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u N  x.  2 )  =  ( -u N  +  -u N ) )
119114, 50negsubd 9418 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u N  +  -u N )  =  (
-u N  -  N
) )
120118, 119eqtrd 2469 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u N  x.  2 )  =  ( -u N  -  N )
)
121120oveq2d 6098 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u N  -  ( -u N  x.  2 ) )  =  ( -u N  -  ( -u N  -  N ) ) )
122114, 50nncand 9417 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u N  -  ( -u N  -  N ) )  =  N )
123121, 122eqtrd 2469 . . . . . . . . . . . 12  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u N  -  ( -u N  x.  2 ) )  =  N )
124123oveq1d 6097 . . . . . . . . . . 11  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( -u N  -  ( -u N  x.  2 ) )  - 
1 )  =  ( N  -  1 ) )
125117, 124eqtrd 2469 . . . . . . . . . 10  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( -u N  -  1 )  -  ( -u N  x.  2 ) )  =  ( N  -  1 ) )
126125oveq2d 6098 . . . . . . . . 9  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( x ^ (
( -u N  -  1 )  -  ( -u N  x.  2 ) ) )  =  ( x ^ ( N  -  1 ) ) )
127101, 106, 107divrec2d 9795 . . . . . . . . 9  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( x ^
( -u N  -  1 ) )  /  (
x ^ ( -u N  x.  2 ) ) )  =  ( ( 1  /  (
x ^ ( -u N  x.  2 ) ) )  x.  (
x ^ ( -u N  -  1 ) ) ) )
128112, 126, 1273eqtr3rd 2478 . . . . . . . 8  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( 1  / 
( x ^ ( -u N  x.  2 ) ) )  x.  (
x ^ ( -u N  -  1 ) ) )  =  ( x ^ ( N  -  1 ) ) )
129128oveq2d 6098 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( N  x.  (
( 1  /  (
x ^ ( -u N  x.  2 ) ) )  x.  (
x ^ ( -u N  -  1 ) ) ) )  =  ( N  x.  (
x ^ ( N  -  1 ) ) ) )
130111, 129eqtrd 2469 . . . . . 6  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( ( 1  / 
( x ^ ( -u N  x.  2 ) ) )  x.  ( N  x.  ( x ^ ( -u N  -  1 ) ) ) )  =  ( N  x.  ( x ^ ( N  - 
1 ) ) ) )
131103, 110, 1303eqtrd 2473 . . . . 5  |-  ( ( ( N  e.  RR  /\  -u N  e.  NN )  /\  x  e.  ( CC  \  { 0 } ) )  -> 
( -u ( 1  / 
( ( x ^ -u N ) ^ 2 ) )  x.  ( -u N  x.  ( x ^ ( -u N  -  1 ) ) ) )  =  ( N  x.  ( x ^ ( N  - 
1 ) ) ) )
132131mpteq2dva 4296 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( x  e.  ( CC  \  {
0 } )  |->  (
-u ( 1  / 
( ( x ^ -u N ) ^ 2 ) )  x.  ( -u N  x.  ( x ^ ( -u N  -  1 ) ) ) ) )  =  ( x  e.  ( CC  \  { 0 } )  |->  ( N  x.  ( x ^
( N  -  1 ) ) ) ) )
13356, 91, 1323eqtrd 2473 . . 3  |-  ( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( CC  _D  ( x  e.  ( CC  \  { 0 } )  |->  ( x ^ N ) ) )  =  ( x  e.  ( CC  \  {
0 } )  |->  ( N  x.  ( x ^ ( N  - 
1 ) ) ) ) )
13446, 133jaoi 370 . 2  |-  ( ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( x ^ N ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
1351, 134sylbi 189 1  |-  ( N  e.  ZZ  ->  ( CC  _D  ( x  e.  ( CC  \  {
0 } )  |->  ( x ^ N ) ) )  =  ( x  e.  ( CC 
\  { 0 } )  |->  ( N  x.  ( x ^ ( N  -  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2600   _Vcvv 2957    \ cdif 3318   ifcif 3740   {csn 3815   {cpr 3816    e. cmpt 4267   ` cfv 5455  (class class class)co 6082   CCcc 8989   RRcr 8990   0cc0 8991   1c1 8992    + caddc 8994    x. cmul 8996    - cmin 9292   -ucneg 9293    / cdiv 9678   NNcn 10001   2c2 10050   NN0cn0 10222   ZZcz 10283   ^cexp 11383   ↾t crest 13649   TopOpenctopn 13650  ℂfldccnfld 16704   Topctop 16959   Clsdccld 17081   Hauscha 17373    _D cdv 19751
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069  ax-addf 9070  ax-mulf 9071
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6306  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-2o 6726  df-oadd 6729  df-er 6906  df-map 7021  df-pm 7022  df-ixp 7065  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-fi 7417  df-sup 7447  df-oi 7480  df-card 7827  df-cda 8049  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-4 10061  df-5 10062  df-6 10063  df-7 10064  df-8 10065  df-9 10066  df-10 10067  df-n0 10223  df-z 10284  df-dec 10384  df-uz 10490  df-q 10576  df-rp 10614  df-xneg 10711  df-xadd 10712  df-xmul 10713  df-icc 10924  df-fz 11045  df-fzo 11137  df-seq 11325  df-exp 11384  df-hash 11620  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-struct 13472  df-ndx 13473  df-slot 13474  df-base 13475  df-sets 13476  df-ress 13477  df-plusg 13543  df-mulr 13544  df-starv 13545  df-sca 13546  df-vsca 13547  df-tset 13549  df-ple 13550  df-ds 13552  df-unif 13553  df-hom 13554  df-cco 13555  df-rest 13651  df-topn 13652  df-topgen 13668  df-pt 13669  df-prds 13672  df-xrs 13727  df-0g 13728  df-gsum 13729  df-qtop 13734  df-imas 13735  df-xps 13737  df-mre 13812  df-mrc 13813  df-acs 13815  df-mnd 14691  df-submnd 14740  df-mulg 14816  df-cntz 15117  df-cmn 15415  df-psmet 16695  df-xmet 16696  df-met 16697  df-bl 16698  df-mopn 16699  df-fbas 16700  df-fg 16701  df-cnfld 16705  df-top 16964  df-bases 16966  df-topon 16967  df-topsp 16968  df-cld 17084  df-ntr 17085  df-cls 17086  df-nei 17163  df-lp 17201  df-perf 17202  df-cn 17292  df-cnp 17293  df-t1 17379  df-haus 17380  df-tx 17595  df-hmeo 17788  df-fil 17879  df-fm 17971  df-flim 17972  df-flf 17973  df-xms 18351  df-ms 18352  df-tms 18353  df-cncf 18909  df-limc 19754  df-dv 19755
  Copyright terms: Public domain W3C validator