MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm1 Unicode version

Theorem dvferm1 19332
Description: One-sided version of dvferm 19335. A point  U which is the local maximum of its right neighborhood has derivative at most zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvferm.a  |-  ( ph  ->  F : X --> RR )
dvferm.b  |-  ( ph  ->  X  C_  RR )
dvferm.u  |-  ( ph  ->  U  e.  ( A (,) B ) )
dvferm.s  |-  ( ph  ->  ( A (,) B
)  C_  X )
dvferm.d  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
dvferm1.r  |-  ( ph  ->  A. y  e.  ( U (,) B ) ( F `  y
)  <_  ( F `  U ) )
Assertion
Ref Expression
dvferm1  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  <_  0 )
Distinct variable groups:    y, A    y, B    y, F    y, U    y, X    ph, y

Proof of Theorem dvferm1
Dummy variables  z  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvferm.a . . . . . . . 8  |-  ( ph  ->  F : X --> RR )
2 dvferm.b . . . . . . . 8  |-  ( ph  ->  X  C_  RR )
3 dvfre 19300 . . . . . . . 8  |-  ( ( F : X --> RR  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
41, 2, 3syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
5 dvferm.d . . . . . . 7  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
6 ffvelrn 5663 . . . . . . 7  |-  ( ( ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR 
/\  U  e.  dom  ( RR  _D  F
) )  ->  (
( RR  _D  F
) `  U )  e.  RR )
74, 5, 6syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  RR )
87anim1i 551 . . . . 5  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( (
( RR  _D  F
) `  U )  e.  RR  /\  0  < 
( ( RR  _D  F ) `  U
) ) )
9 elrp 10356 . . . . 5  |-  ( ( ( RR  _D  F
) `  U )  e.  RR+  <->  ( ( ( RR  _D  F ) `
 U )  e.  RR  /\  0  < 
( ( RR  _D  F ) `  U
) ) )
108, 9sylibr 203 . . . 4  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( ( RR  _D  F ) `  U )  e.  RR+ )
11 dvf 19257 . . . . . . . . . . 11  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
12 ffun 5391 . . . . . . . . . . 11  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  Fun  ( RR  _D  F ) )
13 funfvbrb 5638 . . . . . . . . . . 11  |-  ( Fun  ( RR  _D  F
)  ->  ( U  e.  dom  ( RR  _D  F )  <->  U ( RR  _D  F ) ( ( RR  _D  F
) `  U )
) )
1411, 12, 13mp2b 9 . . . . . . . . . 10  |-  ( U  e.  dom  ( RR 
_D  F )  <->  U ( RR  _D  F ) ( ( RR  _D  F
) `  U )
)
155, 14sylib 188 . . . . . . . . 9  |-  ( ph  ->  U ( RR  _D  F ) ( ( RR  _D  F ) `
 U ) )
16 eqid 2283 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  RR )  =  ( ( TopOpen ` fld )t  RR )
17 eqid 2283 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
18 eqid 2283 . . . . . . . . . 10  |-  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) )  =  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) )
19 ax-resscn 8794 . . . . . . . . . . 11  |-  RR  C_  CC
2019a1i 10 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
21 fss 5397 . . . . . . . . . . 11  |-  ( ( F : X --> RR  /\  RR  C_  CC )  ->  F : X --> CC )
221, 19, 21sylancl 643 . . . . . . . . . 10  |-  ( ph  ->  F : X --> CC )
2316, 17, 18, 20, 22, 2eldv 19248 . . . . . . . . 9  |-  ( ph  ->  ( U ( RR 
_D  F ) ( ( RR  _D  F
) `  U )  <->  ( U  e.  ( ( int `  ( (
TopOpen ` fld )t  RR ) ) `  X )  /\  (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) ) ) )
2415, 23mpbid 201 . . . . . . . 8  |-  ( ph  ->  ( U  e.  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  X )  /\  (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) ) )
2524simprd 449 . . . . . . 7  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  ( ( x  e.  ( X 
\  { U }
)  |->  ( ( ( F `  x )  -  ( F `  U ) )  / 
( x  -  U
) ) ) lim CC  U ) )
2625adantr 451 . . . . . 6  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( ( RR  _D  F ) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) )
272, 19syl6ss 3191 . . . . . . . . . 10  |-  ( ph  ->  X  C_  CC )
28 dvferm.s . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  C_  X )
29 dvferm.u . . . . . . . . . . 11  |-  ( ph  ->  U  e.  ( A (,) B ) )
3028, 29sseldd 3181 . . . . . . . . . 10  |-  ( ph  ->  U  e.  X )
3122, 27, 30dvlem 19246 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { U } ) )  -> 
( ( ( F `
 x )  -  ( F `  U ) )  /  ( x  -  U ) )  e.  CC )
3231, 18fmptd 5684 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) : ( X  \  { U } ) --> CC )
3332adantr 451 . . . . . . 7  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) : ( X  \  { U } ) --> CC )
34 difss 3303 . . . . . . . 8  |-  ( X 
\  { U }
)  C_  X
3527adantr 451 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  X  C_  CC )
3634, 35syl5ss 3190 . . . . . . 7  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( X  \  { U } ) 
C_  CC )
3727, 30sseldd 3181 . . . . . . . 8  |-  ( ph  ->  U  e.  CC )
3837adantr 451 . . . . . . 7  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  U  e.  CC )
3933, 36, 38ellimc3 19229 . . . . . 6  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U )  <->  ( (
( RR  _D  F
) `  U )  e.  CC  /\  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) ) ) )
4026, 39mpbid 201 . . . . 5  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( (
( RR  _D  F
) `  U )  e.  CC  /\  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) ) )
4140simprd 449 . . . 4  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) )
42 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
4342oveq1d 5873 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( F `  x
)  -  ( F `
 U ) )  =  ( ( F `
 z )  -  ( F `  U ) ) )
44 oveq1 5865 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  -  U )  =  ( z  -  U ) )
4543, 44oveq12d 5876 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) )  =  ( ( ( F `  z )  -  ( F `  U ) )  / 
( z  -  U
) ) )
46 ovex 5883 . . . . . . . . . . . 12  |-  ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  e. 
_V
4745, 18, 46fvmpt 5602 . . . . . . . . . . 11  |-  ( z  e.  ( X  \  { U } )  -> 
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  =  ( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) ) )
4847oveq1d 5873 . . . . . . . . . 10  |-  ( z  e.  ( X  \  { U } )  -> 
( ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) ) `  z )  -  ( ( RR 
_D  F ) `  U ) )  =  ( ( ( ( F `  z )  -  ( F `  U ) )  / 
( z  -  U
) )  -  (
( RR  _D  F
) `  U )
) )
4948fveq2d 5529 . . . . . . . . 9  |-  ( z  e.  ( X  \  { U } )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  =  ( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) ) )
50 id 19 . . . . . . . . 9  |-  ( y  =  ( ( RR 
_D  F ) `  U )  ->  y  =  ( ( RR 
_D  F ) `  U ) )
5149, 50breqan12rd 4039 . . . . . . . 8  |-  ( ( y  =  ( ( RR  _D  F ) `
 U )  /\  z  e.  ( X  \  { U } ) )  ->  ( ( abs `  ( ( ( x  e.  ( X 
\  { U }
)  |->  ( ( ( F `  x )  -  ( F `  U ) )  / 
( x  -  U
) ) ) `  z )  -  (
( RR  _D  F
) `  U )
) )  <  y  <->  ( abs `  ( ( ( ( F `  z )  -  ( F `  U )
)  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) )
5251imbi2d 307 . . . . . . 7  |-  ( ( y  =  ( ( RR  _D  F ) `
 U )  /\  z  e.  ( X  \  { U } ) )  ->  ( (
( z  =/=  U  /\  ( abs `  (
z  -  U ) )  <  u )  ->  ( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y )  <->  ( (
z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) ) )
5352ralbidva 2559 . . . . . 6  |-  ( y  =  ( ( RR 
_D  F ) `  U )  ->  ( A. z  e.  ( X  \  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( x  e.  ( X 
\  { U }
)  |->  ( ( ( F `  x )  -  ( F `  U ) )  / 
( x  -  U
) ) ) `  z )  -  (
( RR  _D  F
) `  U )
) )  <  y
)  <->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) ) )
5453rexbidv 2564 . . . . 5  |-  ( y  =  ( ( RR 
_D  F ) `  U )  ->  ( E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y )  <->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) ) )
5554rspcv 2880 . . . 4  |-  ( ( ( RR  _D  F
) `  U )  e.  RR+  ->  ( A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y )  ->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) ) )
5610, 41, 55sylc 56 . . 3  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) )
571ad3antrrr 710 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  F : X --> RR )
582ad3antrrr 710 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  X  C_  RR )
5929ad3antrrr 710 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  U  e.  ( A (,) B ) )
6028ad3antrrr 710 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  -> 
( A (,) B
)  C_  X )
615ad3antrrr 710 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  U  e.  dom  ( RR 
_D  F ) )
62 dvferm1.r . . . . . . 7  |-  ( ph  ->  A. y  e.  ( U (,) B ) ( F `  y
)  <_  ( F `  U ) )
6362ad3antrrr 710 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  A. y  e.  ( U (,) B ) ( F `  y )  <_  ( F `  U ) )
64 simpllr 735 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  -> 
0  <  ( ( RR  _D  F ) `  U ) )
65 simplr 731 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  u  e.  RR+ )
66 simpr 447 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  A. z  e.  ( X  \  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )
67 eqid 2283 . . . . . 6  |-  ( ( U  +  if ( B  <_  ( U  +  u ) ,  B ,  ( U  +  u ) ) )  /  2 )  =  ( ( U  +  if ( B  <_  ( U  +  u ) ,  B ,  ( U  +  u ) ) )  /  2 )
6857, 58, 59, 60, 61, 63, 64, 65, 66, 67dvferm1lem 19331 . . . . 5  |-  -.  (
( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )
6968imnani 412 . . . 4  |-  ( ( ( ph  /\  0  <  ( ( RR  _D  F ) `  U
) )  /\  u  e.  RR+ )  ->  -.  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )
7069nrexdv 2646 . . 3  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  -.  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) )
7156, 70pm2.65da 559 . 2  |-  ( ph  ->  -.  0  <  (
( RR  _D  F
) `  U )
)
72 0re 8838 . . 3  |-  0  e.  RR
73 lenlt 8901 . . 3  |-  ( ( ( ( RR  _D  F ) `  U
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( RR 
_D  F ) `  U )  <_  0  <->  -.  0  <  ( ( RR  _D  F ) `
 U ) ) )
747, 72, 73sylancl 643 . 2  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  U )  <_  0  <->  -.  0  <  ( ( RR  _D  F ) `
 U ) ) )
7571, 74mpbird 223 1  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  <_  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    \ cdif 3149    C_ wss 3152   ifcif 3565   {csn 3640   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   Fun wfun 5249   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    + caddc 8740    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   2c2 9795   RR+crp 10354   (,)cioo 10656   abscabs 11719   ↾t crest 13325   TopOpenctopn 13326  ℂfldccnfld 16377   intcnt 16754   lim CC climc 19212    _D cdv 19213
This theorem is referenced by:  dvferm  19335  dvivthlem1  19355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-icc 10663  df-fz 10783  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-starv 13223  df-tset 13227  df-ple 13228  df-ds 13230  df-rest 13327  df-topn 13328  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-cncf 18382  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator