MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm1 Unicode version

Theorem dvferm1 19729
Description: One-sided version of dvferm 19732. A point  U which is the local maximum of its right neighborhood has derivative at most zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvferm.a  |-  ( ph  ->  F : X --> RR )
dvferm.b  |-  ( ph  ->  X  C_  RR )
dvferm.u  |-  ( ph  ->  U  e.  ( A (,) B ) )
dvferm.s  |-  ( ph  ->  ( A (,) B
)  C_  X )
dvferm.d  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
dvferm1.r  |-  ( ph  ->  A. y  e.  ( U (,) B ) ( F `  y
)  <_  ( F `  U ) )
Assertion
Ref Expression
dvferm1  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  <_  0 )
Distinct variable groups:    y, A    y, B    y, F    y, U    y, X    ph, y

Proof of Theorem dvferm1
Dummy variables  z  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvferm.a . . . . . . . 8  |-  ( ph  ->  F : X --> RR )
2 dvferm.b . . . . . . . 8  |-  ( ph  ->  X  C_  RR )
3 dvfre 19697 . . . . . . . 8  |-  ( ( F : X --> RR  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
41, 2, 3syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
5 dvferm.d . . . . . . 7  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
64, 5ffvelrnd 5803 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  RR )
76anim1i 552 . . . . 5  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( (
( RR  _D  F
) `  U )  e.  RR  /\  0  < 
( ( RR  _D  F ) `  U
) ) )
8 elrp 10539 . . . . 5  |-  ( ( ( RR  _D  F
) `  U )  e.  RR+  <->  ( ( ( RR  _D  F ) `
 U )  e.  RR  /\  0  < 
( ( RR  _D  F ) `  U
) ) )
97, 8sylibr 204 . . . 4  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( ( RR  _D  F ) `  U )  e.  RR+ )
10 dvf 19654 . . . . . . . . . . 11  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
11 ffun 5526 . . . . . . . . . . 11  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  Fun  ( RR  _D  F ) )
12 funfvbrb 5775 . . . . . . . . . . 11  |-  ( Fun  ( RR  _D  F
)  ->  ( U  e.  dom  ( RR  _D  F )  <->  U ( RR  _D  F ) ( ( RR  _D  F
) `  U )
) )
1310, 11, 12mp2b 10 . . . . . . . . . 10  |-  ( U  e.  dom  ( RR 
_D  F )  <->  U ( RR  _D  F ) ( ( RR  _D  F
) `  U )
)
145, 13sylib 189 . . . . . . . . 9  |-  ( ph  ->  U ( RR  _D  F ) ( ( RR  _D  F ) `
 U ) )
15 eqid 2380 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  RR )  =  ( ( TopOpen ` fld )t  RR )
16 eqid 2380 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
17 eqid 2380 . . . . . . . . . 10  |-  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) )  =  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) )
18 ax-resscn 8973 . . . . . . . . . . 11  |-  RR  C_  CC
1918a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
20 fss 5532 . . . . . . . . . . 11  |-  ( ( F : X --> RR  /\  RR  C_  CC )  ->  F : X --> CC )
211, 18, 20sylancl 644 . . . . . . . . . 10  |-  ( ph  ->  F : X --> CC )
2215, 16, 17, 19, 21, 2eldv 19645 . . . . . . . . 9  |-  ( ph  ->  ( U ( RR 
_D  F ) ( ( RR  _D  F
) `  U )  <->  ( U  e.  ( ( int `  ( (
TopOpen ` fld )t  RR ) ) `  X )  /\  (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) ) ) )
2314, 22mpbid 202 . . . . . . . 8  |-  ( ph  ->  ( U  e.  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  X )  /\  (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) ) )
2423simprd 450 . . . . . . 7  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  ( ( x  e.  ( X 
\  { U }
)  |->  ( ( ( F `  x )  -  ( F `  U ) )  / 
( x  -  U
) ) ) lim CC  U ) )
2524adantr 452 . . . . . 6  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( ( RR  _D  F ) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) )
262, 18syl6ss 3296 . . . . . . . . . 10  |-  ( ph  ->  X  C_  CC )
27 dvferm.s . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  C_  X )
28 dvferm.u . . . . . . . . . . 11  |-  ( ph  ->  U  e.  ( A (,) B ) )
2927, 28sseldd 3285 . . . . . . . . . 10  |-  ( ph  ->  U  e.  X )
3021, 26, 29dvlem 19643 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { U } ) )  -> 
( ( ( F `
 x )  -  ( F `  U ) )  /  ( x  -  U ) )  e.  CC )
3130, 17fmptd 5825 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) : ( X  \  { U } ) --> CC )
3231adantr 452 . . . . . . 7  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) : ( X  \  { U } ) --> CC )
3326adantr 452 . . . . . . . 8  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  X  C_  CC )
3433ssdifssd 3421 . . . . . . 7  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( X  \  { U } ) 
C_  CC )
3526, 29sseldd 3285 . . . . . . . 8  |-  ( ph  ->  U  e.  CC )
3635adantr 452 . . . . . . 7  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  U  e.  CC )
3732, 34, 36ellimc3 19626 . . . . . 6  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U )  <->  ( (
( RR  _D  F
) `  U )  e.  CC  /\  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) ) ) )
3825, 37mpbid 202 . . . . 5  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  ( (
( RR  _D  F
) `  U )  e.  CC  /\  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) ) )
3938simprd 450 . . . 4  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) )
40 fveq2 5661 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
4140oveq1d 6028 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( F `  x
)  -  ( F `
 U ) )  =  ( ( F `
 z )  -  ( F `  U ) ) )
42 oveq1 6020 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  -  U )  =  ( z  -  U ) )
4341, 42oveq12d 6031 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) )  =  ( ( ( F `  z )  -  ( F `  U ) )  / 
( z  -  U
) ) )
44 ovex 6038 . . . . . . . . . . . 12  |-  ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  e. 
_V
4543, 17, 44fvmpt 5738 . . . . . . . . . . 11  |-  ( z  e.  ( X  \  { U } )  -> 
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  =  ( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) ) )
4645oveq1d 6028 . . . . . . . . . 10  |-  ( z  e.  ( X  \  { U } )  -> 
( ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) ) `  z )  -  ( ( RR 
_D  F ) `  U ) )  =  ( ( ( ( F `  z )  -  ( F `  U ) )  / 
( z  -  U
) )  -  (
( RR  _D  F
) `  U )
) )
4746fveq2d 5665 . . . . . . . . 9  |-  ( z  e.  ( X  \  { U } )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  =  ( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) ) )
48 id 20 . . . . . . . . 9  |-  ( y  =  ( ( RR 
_D  F ) `  U )  ->  y  =  ( ( RR 
_D  F ) `  U ) )
4947, 48breqan12rd 4162 . . . . . . . 8  |-  ( ( y  =  ( ( RR  _D  F ) `
 U )  /\  z  e.  ( X  \  { U } ) )  ->  ( ( abs `  ( ( ( x  e.  ( X 
\  { U }
)  |->  ( ( ( F `  x )  -  ( F `  U ) )  / 
( x  -  U
) ) ) `  z )  -  (
( RR  _D  F
) `  U )
) )  <  y  <->  ( abs `  ( ( ( ( F `  z )  -  ( F `  U )
)  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) )
5049imbi2d 308 . . . . . . 7  |-  ( ( y  =  ( ( RR  _D  F ) `
 U )  /\  z  e.  ( X  \  { U } ) )  ->  ( (
( z  =/=  U  /\  ( abs `  (
z  -  U ) )  <  u )  ->  ( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y )  <->  ( (
z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) ) )
5150ralbidva 2658 . . . . . 6  |-  ( y  =  ( ( RR 
_D  F ) `  U )  ->  ( A. z  e.  ( X  \  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( x  e.  ( X 
\  { U }
)  |->  ( ( ( F `  x )  -  ( F `  U ) )  / 
( x  -  U
) ) ) `  z )  -  (
( RR  _D  F
) `  U )
) )  <  y
)  <->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) ) )
5251rexbidv 2663 . . . . 5  |-  ( y  =  ( ( RR 
_D  F ) `  U )  ->  ( E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y )  <->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) ) )
5352rspcv 2984 . . . 4  |-  ( ( ( RR  _D  F
) `  U )  e.  RR+  ->  ( A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y )  ->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) ) )
549, 39, 53sylc 58 . . 3  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) )
551ad3antrrr 711 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  F : X --> RR )
562ad3antrrr 711 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  X  C_  RR )
5728ad3antrrr 711 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  U  e.  ( A (,) B ) )
5827ad3antrrr 711 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  -> 
( A (,) B
)  C_  X )
595ad3antrrr 711 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  U  e.  dom  ( RR 
_D  F ) )
60 dvferm1.r . . . . . . 7  |-  ( ph  ->  A. y  e.  ( U (,) B ) ( F `  y
)  <_  ( F `  U ) )
6160ad3antrrr 711 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  A. y  e.  ( U (,) B ) ( F `  y )  <_  ( F `  U ) )
62 simpllr 736 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  -> 
0  <  ( ( RR  _D  F ) `  U ) )
63 simplr 732 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  u  e.  RR+ )
64 simpr 448 . . . . . 6  |-  ( ( ( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )  ->  A. z  e.  ( X  \  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )
65 eqid 2380 . . . . . 6  |-  ( ( U  +  if ( B  <_  ( U  +  u ) ,  B ,  ( U  +  u ) ) )  /  2 )  =  ( ( U  +  if ( B  <_  ( U  +  u ) ,  B ,  ( U  +  u ) ) )  /  2 )
6655, 56, 57, 58, 59, 61, 62, 63, 64, 65dvferm1lem 19728 . . . . 5  |-  -.  (
( ( ph  /\  0  <  ( ( RR 
_D  F ) `  U ) )  /\  u  e.  RR+ )  /\  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )
6766imnani 413 . . . 4  |-  ( ( ( ph  /\  0  <  ( ( RR  _D  F ) `  U
) )  /\  u  e.  RR+ )  ->  -.  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) )
6867nrexdv 2745 . . 3  |-  ( (
ph  /\  0  <  ( ( RR  _D  F
) `  U )
)  ->  -.  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) )
6954, 68pm2.65da 560 . 2  |-  ( ph  ->  -.  0  <  (
( RR  _D  F
) `  U )
)
70 0re 9017 . . 3  |-  0  e.  RR
71 lenlt 9080 . . 3  |-  ( ( ( ( RR  _D  F ) `  U
)  e.  RR  /\  0  e.  RR )  ->  ( ( ( RR 
_D  F ) `  U )  <_  0  <->  -.  0  <  ( ( RR  _D  F ) `
 U ) ) )
726, 70, 71sylancl 644 . 2  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  U )  <_  0  <->  -.  0  <  ( ( RR  _D  F ) `
 U ) ) )
7369, 72mpbird 224 1  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  <_  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642   E.wrex 2643    \ cdif 3253    C_ wss 3256   ifcif 3675   {csn 3750   class class class wbr 4146    e. cmpt 4200   dom cdm 4811   Fun wfun 5381   -->wf 5383   ` cfv 5387  (class class class)co 6013   CCcc 8914   RRcr 8915   0cc0 8916    + caddc 8919    < clt 9046    <_ cle 9047    - cmin 9216    / cdiv 9602   2c2 9974   RR+crp 10537   (,)cioo 10841   abscabs 11959   ↾t crest 13568   TopOpenctopn 13569  ℂfldccnfld 16619   intcnt 16997   lim CC climc 19609    _D cdv 19610
This theorem is referenced by:  dvferm  19732  dvivthlem1  19752
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-pm 6950  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-fi 7344  df-sup 7374  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-q 10500  df-rp 10538  df-xneg 10635  df-xadd 10636  df-xmul 10637  df-ioo 10845  df-icc 10848  df-fz 10969  df-seq 11244  df-exp 11303  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-plusg 13462  df-mulr 13463  df-starv 13464  df-tset 13468  df-ple 13469  df-ds 13471  df-unif 13472  df-rest 13570  df-topn 13571  df-topgen 13587  df-xmet 16612  df-met 16613  df-bl 16614  df-mopn 16615  df-fbas 16616  df-fg 16617  df-cnfld 16620  df-top 16879  df-bases 16881  df-topon 16882  df-topsp 16883  df-cld 16999  df-ntr 17000  df-cls 17001  df-nei 17078  df-lp 17116  df-perf 17117  df-cn 17206  df-cnp 17207  df-haus 17294  df-fil 17792  df-fm 17884  df-flim 17885  df-flf 17886  df-xms 18252  df-ms 18253  df-cncf 18772  df-limc 19613  df-dv 19614
  Copyright terms: Public domain W3C validator