MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm1lem Unicode version

Theorem dvferm1lem 19829
Description: Lemma for dvferm 19833. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
dvferm.a  |-  ( ph  ->  F : X --> RR )
dvferm.b  |-  ( ph  ->  X  C_  RR )
dvferm.u  |-  ( ph  ->  U  e.  ( A (,) B ) )
dvferm.s  |-  ( ph  ->  ( A (,) B
)  C_  X )
dvferm.d  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
dvferm1.r  |-  ( ph  ->  A. y  e.  ( U (,) B ) ( F `  y
)  <_  ( F `  U ) )
dvferm1.z  |-  ( ph  ->  0  <  ( ( RR  _D  F ) `
 U ) )
dvferm1.t  |-  ( ph  ->  T  e.  RR+ )
dvferm1.l  |-  ( ph  ->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  T )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) )
dvferm1.x  |-  S  =  ( ( U  +  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )  /  2 )
Assertion
Ref Expression
dvferm1lem  |-  -.  ph
Distinct variable groups:    y, z, A    y, B, z    y, F, z    y, U, z   
y, X, z    ph, y    y, S, z    z, T
Allowed substitution hints:    ph( z)    T( y)

Proof of Theorem dvferm1lem
StepHypRef Expression
1 dvferm.a . . . . . . . . 9  |-  ( ph  ->  F : X --> RR )
2 dvferm.b . . . . . . . . 9  |-  ( ph  ->  X  C_  RR )
3 dvfre 19798 . . . . . . . . 9  |-  ( ( F : X --> RR  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
41, 2, 3syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
5 dvferm.d . . . . . . . 8  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
64, 5ffvelrnd 5838 . . . . . . 7  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  RR )
76recnd 9078 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  CC )
87subidd 9363 . . . . 5  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  U )  -  (
( RR  _D  F
) `  U )
)  =  0 )
9 dvferm.u . . . . . . . . . . . . . 14  |-  ( ph  ->  U  e.  ( A (,) B ) )
10 ne0i 3602 . . . . . . . . . . . . . 14  |-  ( U  e.  ( A (,) B )  ->  ( A (,) B )  =/=  (/) )
11 ndmioo 10907 . . . . . . . . . . . . . . 15  |-  ( -.  ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B
)  =  (/) )
1211necon1ai 2617 . . . . . . . . . . . . . 14  |-  ( ( A (,) B )  =/=  (/)  ->  ( A  e.  RR*  /\  B  e. 
RR* ) )
139, 10, 123syl 19 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  RR*  /\  B  e.  RR* )
)
1413simpld 446 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR* )
15 eliooord 10934 . . . . . . . . . . . . . . 15  |-  ( U  e.  ( A (,) B )  ->  ( A  <  U  /\  U  <  B ) )
169, 15syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( A  <  U  /\  U  <  B ) )
1716simpld 446 . . . . . . . . . . . . 13  |-  ( ph  ->  A  <  U )
18 ioossre 10936 . . . . . . . . . . . . . . . 16  |-  ( A (,) B )  C_  RR
1918, 9sseldi 3314 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  RR )
2019rexrd 9098 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  e.  RR* )
21 xrltle 10706 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR*  /\  U  e.  RR* )  ->  ( A  <  U  ->  A  <_  U ) )
2214, 20, 21syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  <  U  ->  A  <_  U )
)
2317, 22mpd 15 . . . . . . . . . . . 12  |-  ( ph  ->  A  <_  U )
24 iooss1 10915 . . . . . . . . . . . 12  |-  ( ( A  e.  RR*  /\  A  <_  U )  ->  ( U (,) B )  C_  ( A (,) B ) )
2514, 23, 24syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( U (,) B
)  C_  ( A (,) B ) )
26 dvferm.s . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  C_  X )
2725, 26sstrd 3326 . . . . . . . . . 10  |-  ( ph  ->  ( U (,) B
)  C_  X )
28 dvferm1.x . . . . . . . . . . . 12  |-  S  =  ( ( U  +  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )  /  2 )
2913simprd 450 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  e.  RR* )
30 dvferm1.t . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  T  e.  RR+ )
3130rpred 10612 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  T  e.  RR )
3219, 31readdcld 9079 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( U  +  T
)  e.  RR )
3332rexrd 9098 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( U  +  T
)  e.  RR* )
34 ifcl 3743 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  RR*  /\  ( U  +  T )  e.  RR* )  ->  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  e.  RR* )
3529, 33, 34syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ph  ->  if ( B  <_ 
( U  +  T
) ,  B , 
( U  +  T
) )  e.  RR* )
36 mnfxr 10678 . . . . . . . . . . . . . . . . . 18  |-  -oo  e.  RR*
3736a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  -oo  e.  RR* )
38 mnflt 10686 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  RR  ->  -oo  <  U )
3919, 38syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  -oo  <  U )
4016simprd 450 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  U  <  B )
4137, 20, 29, 39, 40xrlttrd 10713 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  -oo  <  B )
42 mnflt 10686 . . . . . . . . . . . . . . . . 17  |-  ( ( U  +  T )  e.  RR  ->  -oo  <  ( U  +  T ) )
4332, 42syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  -oo  <  ( U  +  T ) )
44 breq2 4184 . . . . . . . . . . . . . . . . 17  |-  ( B  =  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  -> 
(  -oo  <  B  <->  -oo  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) ) )
45 breq2 4184 . . . . . . . . . . . . . . . . 17  |-  ( ( U  +  T )  =  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  -> 
(  -oo  <  ( U  +  T )  <->  -oo  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) ) )
4644, 45ifboth 3738 . . . . . . . . . . . . . . . 16  |-  ( ( 
-oo  <  B  /\  -oo  <  ( U  +  T
) )  ->  -oo  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )
4741, 43, 46syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -oo  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )
48 xrmin2 10730 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  RR*  /\  ( U  +  T )  e.  RR* )  ->  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  <_  ( U  +  T ) )
4929, 33, 48syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ph  ->  if ( B  <_ 
( U  +  T
) ,  B , 
( U  +  T
) )  <_  ( U  +  T )
)
50 xrre 10721 . . . . . . . . . . . . . . 15  |-  ( ( ( if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  e. 
RR*  /\  ( U  +  T )  e.  RR )  /\  (  -oo  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  /\  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  <_ 
( U  +  T
) ) )  ->  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  e.  RR )
5135, 32, 47, 49, 50syl22anc 1185 . . . . . . . . . . . . . 14  |-  ( ph  ->  if ( B  <_ 
( U  +  T
) ,  B , 
( U  +  T
) )  e.  RR )
5219, 51readdcld 9079 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  +  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )  e.  RR )
5352rehalfcld 10178 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( U  +  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )  /  2 )  e.  RR )
5428, 53syl5eqel 2496 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  RR )
5519, 30ltaddrpd 10641 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  <  ( U  +  T ) )
56 breq2 4184 . . . . . . . . . . . . . . 15  |-  ( B  =  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  -> 
( U  <  B  <->  U  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) ) )
57 breq2 4184 . . . . . . . . . . . . . . 15  |-  ( ( U  +  T )  =  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  -> 
( U  <  ( U  +  T )  <->  U  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) ) )
5856, 57ifboth 3738 . . . . . . . . . . . . . 14  |-  ( ( U  <  B  /\  U  <  ( U  +  T ) )  ->  U  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )
5940, 55, 58syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  U  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )
60 avglt1 10169 . . . . . . . . . . . . . 14  |-  ( ( U  e.  RR  /\  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  e.  RR )  -> 
( U  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  <-> 
U  <  ( ( U  +  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )  /  2 ) ) )
6119, 51, 60syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  <-> 
U  <  ( ( U  +  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )  /  2 ) ) )
6259, 61mpbid 202 . . . . . . . . . . . 12  |-  ( ph  ->  U  <  ( ( U  +  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )  /  2 ) )
6362, 28syl6breqr 4220 . . . . . . . . . . 11  |-  ( ph  ->  U  <  S )
6454rexrd 9098 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  RR* )
65 avglt2 10170 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  RR  /\  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  e.  RR )  -> 
( U  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  <-> 
( ( U  +  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )  /  2 )  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) ) )
6619, 51, 65syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( U  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  <-> 
( ( U  +  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )  /  2 )  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) ) )
6759, 66mpbid 202 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( U  +  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )  /  2 )  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )
6828, 67syl5eqbr 4213 . . . . . . . . . . . 12  |-  ( ph  ->  S  <  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) ) )
69 xrmin1 10729 . . . . . . . . . . . . 13  |-  ( ( B  e.  RR*  /\  ( U  +  T )  e.  RR* )  ->  if ( B  <_  ( U  +  T ) ,  B ,  ( U  +  T ) )  <_  B )
7029, 33, 69syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  if ( B  <_ 
( U  +  T
) ,  B , 
( U  +  T
) )  <_  B
)
7164, 35, 29, 68, 70xrltletrd 10715 . . . . . . . . . . 11  |-  ( ph  ->  S  <  B )
72 elioo2 10921 . . . . . . . . . . . 12  |-  ( ( U  e.  RR*  /\  B  e.  RR* )  ->  ( S  e.  ( U (,) B )  <->  ( S  e.  RR  /\  U  < 
S  /\  S  <  B ) ) )
7320, 29, 72syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( S  e.  ( U (,) B )  <-> 
( S  e.  RR  /\  U  <  S  /\  S  <  B ) ) )
7454, 63, 71, 73mpbir3and 1137 . . . . . . . . . 10  |-  ( ph  ->  S  e.  ( U (,) B ) )
7527, 74sseldd 3317 . . . . . . . . 9  |-  ( ph  ->  S  e.  X )
7619, 63gtned 9172 . . . . . . . . 9  |-  ( ph  ->  S  =/=  U )
77 eldifsn 3895 . . . . . . . . 9  |-  ( S  e.  ( X  \  { U } )  <->  ( S  e.  X  /\  S  =/= 
U ) )
7875, 76, 77sylanbrc 646 . . . . . . . 8  |-  ( ph  ->  S  e.  ( X 
\  { U }
) )
79 dvferm1.l . . . . . . . 8  |-  ( ph  ->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  T )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) ) )
8019, 54, 63ltled 9185 . . . . . . . . . . 11  |-  ( ph  ->  U  <_  S )
8119, 54, 80abssubge0d 12197 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( S  -  U )
)  =  ( S  -  U ) )
8254, 51, 32, 68, 49ltletrd 9194 . . . . . . . . . . 11  |-  ( ph  ->  S  <  ( U  +  T ) )
8354, 19, 31ltsubadd2d 9588 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S  -  U )  <  T  <->  S  <  ( U  +  T ) ) )
8482, 83mpbird 224 . . . . . . . . . 10  |-  ( ph  ->  ( S  -  U
)  <  T )
8581, 84eqbrtrd 4200 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( S  -  U )
)  <  T )
8676, 85jca 519 . . . . . . . 8  |-  ( ph  ->  ( S  =/=  U  /\  ( abs `  ( S  -  U )
)  <  T )
)
87 neeq1 2583 . . . . . . . . . . 11  |-  ( z  =  S  ->  (
z  =/=  U  <->  S  =/=  U ) )
88 oveq1 6055 . . . . . . . . . . . . 13  |-  ( z  =  S  ->  (
z  -  U )  =  ( S  -  U ) )
8988fveq2d 5699 . . . . . . . . . . . 12  |-  ( z  =  S  ->  ( abs `  ( z  -  U ) )  =  ( abs `  ( S  -  U )
) )
9089breq1d 4190 . . . . . . . . . . 11  |-  ( z  =  S  ->  (
( abs `  (
z  -  U ) )  <  T  <->  ( abs `  ( S  -  U
) )  <  T
) )
9187, 90anbi12d 692 . . . . . . . . . 10  |-  ( z  =  S  ->  (
( z  =/=  U  /\  ( abs `  (
z  -  U ) )  <  T )  <-> 
( S  =/=  U  /\  ( abs `  ( S  -  U )
)  <  T )
) )
92 fveq2 5695 . . . . . . . . . . . . . . 15  |-  ( z  =  S  ->  ( F `  z )  =  ( F `  S ) )
9392oveq1d 6063 . . . . . . . . . . . . . 14  |-  ( z  =  S  ->  (
( F `  z
)  -  ( F `
 U ) )  =  ( ( F `
 S )  -  ( F `  U ) ) )
9493, 88oveq12d 6066 . . . . . . . . . . . . 13  |-  ( z  =  S  ->  (
( ( F `  z )  -  ( F `  U )
)  /  ( z  -  U ) )  =  ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) ) )
9594oveq1d 6063 . . . . . . . . . . . 12  |-  ( z  =  S  ->  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) )  =  ( ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  -  (
( RR  _D  F
) `  U )
) )
9695fveq2d 5699 . . . . . . . . . . 11  |-  ( z  =  S  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  =  ( abs `  (
( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) ) )
9796breq1d 4190 . . . . . . . . . 10  |-  ( z  =  S  ->  (
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U )  <->  ( abs `  ( ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  -  (
( RR  _D  F
) `  U )
) )  <  (
( RR  _D  F
) `  U )
) )
9891, 97imbi12d 312 . . . . . . . . 9  |-  ( z  =  S  ->  (
( ( z  =/= 
U  /\  ( abs `  ( z  -  U
) )  <  T
)  ->  ( abs `  ( ( ( ( F `  z )  -  ( F `  U ) )  / 
( z  -  U
) )  -  (
( RR  _D  F
) `  U )
) )  <  (
( RR  _D  F
) `  U )
)  <->  ( ( S  =/=  U  /\  ( abs `  ( S  -  U ) )  < 
T )  ->  ( abs `  ( ( ( ( F `  S
)  -  ( F `
 U ) )  /  ( S  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  < 
( ( RR  _D  F ) `  U
) ) ) )
9998rspcv 3016 . . . . . . . 8  |-  ( S  e.  ( X  \  { U } )  -> 
( A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  T )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) )  -> 
( ( S  =/= 
U  /\  ( abs `  ( S  -  U
) )  <  T
)  ->  ( abs `  ( ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  -  (
( RR  _D  F
) `  U )
) )  <  (
( RR  _D  F
) `  U )
) ) )
10078, 79, 86, 99syl3c 59 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U ) )
1011, 75ffvelrnd 5838 . . . . . . . . . 10  |-  ( ph  ->  ( F `  S
)  e.  RR )
10226, 9sseldd 3317 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  X )
1031, 102ffvelrnd 5838 . . . . . . . . . 10  |-  ( ph  ->  ( F `  U
)  e.  RR )
104101, 103resubcld 9429 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  S )  -  ( F `  U )
)  e.  RR )
10554, 19resubcld 9429 . . . . . . . . . 10  |-  ( ph  ->  ( S  -  U
)  e.  RR )
10619, 54posdifd 9577 . . . . . . . . . . 11  |-  ( ph  ->  ( U  <  S  <->  0  <  ( S  -  U ) ) )
10763, 106mpbid 202 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( S  -  U ) )
108105, 107elrpd 10610 . . . . . . . . 9  |-  ( ph  ->  ( S  -  U
)  e.  RR+ )
109104, 108rerpdivcld 10639 . . . . . . . 8  |-  ( ph  ->  ( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  e.  RR )
110109, 6, 6absdifltd 12199 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
( ( ( F `
 S )  -  ( F `  U ) )  /  ( S  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  ( ( RR 
_D  F ) `  U )  <->  ( (
( ( RR  _D  F ) `  U
)  -  ( ( RR  _D  F ) `
 U ) )  <  ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  /\  (
( ( F `  S )  -  ( F `  U )
)  /  ( S  -  U ) )  <  ( ( ( RR  _D  F ) `
 U )  +  ( ( RR  _D  F ) `  U
) ) ) ) )
111100, 110mpbid 202 . . . . . 6  |-  ( ph  ->  ( ( ( ( RR  _D  F ) `
 U )  -  ( ( RR  _D  F ) `  U
) )  <  (
( ( F `  S )  -  ( F `  U )
)  /  ( S  -  U ) )  /\  ( ( ( F `  S )  -  ( F `  U ) )  / 
( S  -  U
) )  <  (
( ( RR  _D  F ) `  U
)  +  ( ( RR  _D  F ) `
 U ) ) ) )
112111simpld 446 . . . . 5  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  U )  -  (
( RR  _D  F
) `  U )
)  <  ( (
( F `  S
)  -  ( F `
 U ) )  /  ( S  -  U ) ) )
1138, 112eqbrtrrd 4202 . . . 4  |-  ( ph  ->  0  <  ( ( ( F `  S
)  -  ( F `
 U ) )  /  ( S  -  U ) ) )
114 gt0div 9840 . . . . 5  |-  ( ( ( ( F `  S )  -  ( F `  U )
)  e.  RR  /\  ( S  -  U
)  e.  RR  /\  0  <  ( S  -  U ) )  -> 
( 0  <  (
( F `  S
)  -  ( F `
 U ) )  <->  0  <  ( ( ( F `  S
)  -  ( F `
 U ) )  /  ( S  -  U ) ) ) )
115104, 105, 107, 114syl3anc 1184 . . . 4  |-  ( ph  ->  ( 0  <  (
( F `  S
)  -  ( F `
 U ) )  <->  0  <  ( ( ( F `  S
)  -  ( F `
 U ) )  /  ( S  -  U ) ) ) )
116113, 115mpbird 224 . . 3  |-  ( ph  ->  0  <  ( ( F `  S )  -  ( F `  U ) ) )
117103, 101posdifd 9577 . . 3  |-  ( ph  ->  ( ( F `  U )  <  ( F `  S )  <->  0  <  ( ( F `
 S )  -  ( F `  U ) ) ) )
118116, 117mpbird 224 . 2  |-  ( ph  ->  ( F `  U
)  <  ( F `  S ) )
119 dvferm1.r . . . 4  |-  ( ph  ->  A. y  e.  ( U (,) B ) ( F `  y
)  <_  ( F `  U ) )
120 fveq2 5695 . . . . . 6  |-  ( y  =  S  ->  ( F `  y )  =  ( F `  S ) )
121120breq1d 4190 . . . . 5  |-  ( y  =  S  ->  (
( F `  y
)  <_  ( F `  U )  <->  ( F `  S )  <_  ( F `  U )
) )
122121rspcv 3016 . . . 4  |-  ( S  e.  ( U (,) B )  ->  ( A. y  e.  ( U (,) B ) ( F `  y )  <_  ( F `  U )  ->  ( F `  S )  <_  ( F `  U
) ) )
12374, 119, 122sylc 58 . . 3  |-  ( ph  ->  ( F `  S
)  <_  ( F `  U ) )
124101, 103lenltd 9183 . . 3  |-  ( ph  ->  ( ( F `  S )  <_  ( F `  U )  <->  -.  ( F `  U
)  <  ( F `  S ) ) )
125123, 124mpbid 202 . 2  |-  ( ph  ->  -.  ( F `  U )  <  ( F `  S )
)
126118, 125pm2.65i 167 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674    \ cdif 3285    C_ wss 3288   (/)c0 3596   ifcif 3707   {csn 3782   class class class wbr 4180   dom cdm 4845   -->wf 5417   ` cfv 5421  (class class class)co 6048   RRcr 8953   0cc0 8954    + caddc 8957    -oocmnf 9082   RR*cxr 9083    < clt 9084    <_ cle 9085    - cmin 9255    / cdiv 9641   2c2 10013   RR+crp 10576   (,)cioo 10880   abscabs 12002    _D cdv 19711
This theorem is referenced by:  dvferm1  19830
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-pm 6988  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-fi 7382  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-5 10025  df-6 10026  df-7 10027  df-8 10028  df-9 10029  df-10 10030  df-n0 10186  df-z 10247  df-dec 10347  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-ioo 10884  df-icc 10887  df-fz 11008  df-seq 11287  df-exp 11346  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-struct 13434  df-ndx 13435  df-slot 13436  df-base 13437  df-plusg 13505  df-mulr 13506  df-starv 13507  df-tset 13511  df-ple 13512  df-ds 13514  df-unif 13515  df-rest 13613  df-topn 13614  df-topgen 13630  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660  df-mopn 16661  df-fbas 16662  df-fg 16663  df-cnfld 16667  df-top 16926  df-bases 16928  df-topon 16929  df-topsp 16930  df-cld 17046  df-ntr 17047  df-cls 17048  df-nei 17125  df-lp 17163  df-perf 17164  df-cn 17253  df-cnp 17254  df-haus 17341  df-fil 17839  df-fm 17931  df-flim 17932  df-flf 17933  df-xms 18311  df-ms 18312  df-cncf 18869  df-limc 19714  df-dv 19715
  Copyright terms: Public domain W3C validator