MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvferm2 Structured version   Unicode version

Theorem dvferm2 19876
Description: One-sided version of dvferm 19877. A point  U which is the local maximum of its left neighborhood has derivative at least zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvferm.a  |-  ( ph  ->  F : X --> RR )
dvferm.b  |-  ( ph  ->  X  C_  RR )
dvferm.u  |-  ( ph  ->  U  e.  ( A (,) B ) )
dvferm.s  |-  ( ph  ->  ( A (,) B
)  C_  X )
dvferm.d  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
dvferm2.r  |-  ( ph  ->  A. y  e.  ( A (,) U ) ( F `  y
)  <_  ( F `  U ) )
Assertion
Ref Expression
dvferm2  |-  ( ph  ->  0  <_  ( ( RR  _D  F ) `  U ) )
Distinct variable groups:    y, A    y, B    y, F    y, U    y, X    ph, y

Proof of Theorem dvferm2
Dummy variables  z  x  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvferm.a . . . . . . . . 9  |-  ( ph  ->  F : X --> RR )
2 dvferm.b . . . . . . . . 9  |-  ( ph  ->  X  C_  RR )
3 dvfre 19842 . . . . . . . . 9  |-  ( ( F : X --> RR  /\  X  C_  RR )  -> 
( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
41, 2, 3syl2anc 644 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> RR )
5 dvferm.d . . . . . . . 8  |-  ( ph  ->  U  e.  dom  ( RR  _D  F ) )
64, 5ffvelrnd 5874 . . . . . . 7  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  RR )
76adantr 453 . . . . . 6  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( ( RR  _D  F ) `  U )  e.  RR )
87renegcld 9469 . . . . 5  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  -u ( ( RR  _D  F ) `
 U )  e.  RR )
96lt0neg1d 9601 . . . . . 6  |-  ( ph  ->  ( ( ( RR 
_D  F ) `  U )  <  0  <->  0  <  -u ( ( RR 
_D  F ) `  U ) ) )
109biimpa 472 . . . . 5  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  0  <  -u ( ( RR  _D  F ) `  U
) )
118, 10elrpd 10651 . . . 4  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  -u ( ( RR  _D  F ) `
 U )  e.  RR+ )
12 dvf 19799 . . . . . . . . . . 11  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
13 ffun 5596 . . . . . . . . . . 11  |-  ( ( RR  _D  F ) : dom  ( RR 
_D  F ) --> CC 
->  Fun  ( RR  _D  F ) )
14 funfvbrb 5846 . . . . . . . . . . 11  |-  ( Fun  ( RR  _D  F
)  ->  ( U  e.  dom  ( RR  _D  F )  <->  U ( RR  _D  F ) ( ( RR  _D  F
) `  U )
) )
1512, 13, 14mp2b 10 . . . . . . . . . 10  |-  ( U  e.  dom  ( RR 
_D  F )  <->  U ( RR  _D  F ) ( ( RR  _D  F
) `  U )
)
165, 15sylib 190 . . . . . . . . 9  |-  ( ph  ->  U ( RR  _D  F ) ( ( RR  _D  F ) `
 U ) )
17 eqid 2438 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  RR )  =  ( ( TopOpen ` fld )t  RR )
18 eqid 2438 . . . . . . . . . 10  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
19 eqid 2438 . . . . . . . . . 10  |-  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) )  =  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) )
20 ax-resscn 9052 . . . . . . . . . . 11  |-  RR  C_  CC
2120a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
22 fss 5602 . . . . . . . . . . 11  |-  ( ( F : X --> RR  /\  RR  C_  CC )  ->  F : X --> CC )
231, 20, 22sylancl 645 . . . . . . . . . 10  |-  ( ph  ->  F : X --> CC )
2417, 18, 19, 21, 23, 2eldv 19790 . . . . . . . . 9  |-  ( ph  ->  ( U ( RR 
_D  F ) ( ( RR  _D  F
) `  U )  <->  ( U  e.  ( ( int `  ( (
TopOpen ` fld )t  RR ) ) `  X )  /\  (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) ) ) )
2516, 24mpbid 203 . . . . . . . 8  |-  ( ph  ->  ( U  e.  ( ( int `  (
( TopOpen ` fld )t  RR ) ) `  X )  /\  (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) ) )
2625simprd 451 . . . . . . 7  |-  ( ph  ->  ( ( RR  _D  F ) `  U
)  e.  ( ( x  e.  ( X 
\  { U }
)  |->  ( ( ( F `  x )  -  ( F `  U ) )  / 
( x  -  U
) ) ) lim CC  U ) )
2726adantr 453 . . . . . 6  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( ( RR  _D  F ) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U ) )
282, 20syl6ss 3362 . . . . . . . . . 10  |-  ( ph  ->  X  C_  CC )
29 dvferm.s . . . . . . . . . . 11  |-  ( ph  ->  ( A (,) B
)  C_  X )
30 dvferm.u . . . . . . . . . . 11  |-  ( ph  ->  U  e.  ( A (,) B ) )
3129, 30sseldd 3351 . . . . . . . . . 10  |-  ( ph  ->  U  e.  X )
3223, 28, 31dvlem 19788 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( X  \  { U } ) )  -> 
( ( ( F `
 x )  -  ( F `  U ) )  /  ( x  -  U ) )  e.  CC )
3332, 19fmptd 5896 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) : ( X  \  { U } ) --> CC )
3433adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) : ( X  \  { U } ) --> CC )
3528adantr 453 . . . . . . . 8  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  X  C_  CC )
3635ssdifssd 3487 . . . . . . 7  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( X  \  { U } ) 
C_  CC )
3728, 31sseldd 3351 . . . . . . . 8  |-  ( ph  ->  U  e.  CC )
3837adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  U  e.  CC )
3934, 36, 38ellimc3 19771 . . . . . 6  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( (
( RR  _D  F
) `  U )  e.  ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) lim
CC  U )  <->  ( (
( RR  _D  F
) `  U )  e.  CC  /\  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) ) ) )
4027, 39mpbid 203 . . . . 5  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  ( (
( RR  _D  F
) `  U )  e.  CC  /\  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) ) )
4140simprd 451 . . . 4  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y ) )
42 fveq2 5731 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
4342oveq1d 6099 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( F `  x
)  -  ( F `
 U ) )  =  ( ( F `
 z )  -  ( F `  U ) ) )
44 oveq1 6091 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  -  U )  =  ( z  -  U ) )
4543, 44oveq12d 6102 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) )  =  ( ( ( F `  z )  -  ( F `  U ) )  / 
( z  -  U
) ) )
46 ovex 6109 . . . . . . . . . . . 12  |-  ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  e. 
_V
4745, 19, 46fvmpt 5809 . . . . . . . . . . 11  |-  ( z  e.  ( X  \  { U } )  -> 
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  =  ( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) ) )
4847oveq1d 6099 . . . . . . . . . 10  |-  ( z  e.  ( X  \  { U } )  -> 
( ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) ) `  z )  -  ( ( RR 
_D  F ) `  U ) )  =  ( ( ( ( F `  z )  -  ( F `  U ) )  / 
( z  -  U
) )  -  (
( RR  _D  F
) `  U )
) )
4948fveq2d 5735 . . . . . . . . 9  |-  ( z  e.  ( X  \  { U } )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  =  ( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) ) )
50 id 21 . . . . . . . . 9  |-  ( y  =  -u ( ( RR 
_D  F ) `  U )  ->  y  =  -u ( ( RR 
_D  F ) `  U ) )
5149, 50breqan12rd 4231 . . . . . . . 8  |-  ( ( y  =  -u (
( RR  _D  F
) `  U )  /\  z  e.  ( X  \  { U }
) )  ->  (
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y  <->  ( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
5251imbi2d 309 . . . . . . 7  |-  ( ( y  =  -u (
( RR  _D  F
) `  U )  /\  z  e.  ( X  \  { U }
) )  ->  (
( ( z  =/= 
U  /\  ( abs `  ( z  -  U
) )  <  u
)  ->  ( abs `  ( ( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x )  -  ( F `  U )
)  /  ( x  -  U ) ) ) `  z )  -  ( ( RR 
_D  F ) `  U ) ) )  <  y )  <->  ( (
z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) ) )
5352ralbidva 2723 . . . . . 6  |-  ( y  =  -u ( ( RR 
_D  F ) `  U )  ->  ( A. z  e.  ( X  \  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( x  e.  ( X 
\  { U }
)  |->  ( ( ( F `  x )  -  ( F `  U ) )  / 
( x  -  U
) ) ) `  z )  -  (
( RR  _D  F
) `  U )
) )  <  y
)  <->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) ) )
5453rexbidv 2728 . . . . 5  |-  ( y  =  -u ( ( RR 
_D  F ) `  U )  ->  ( E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y )  <->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) ) )
5554rspcv 3050 . . . 4  |-  ( -u ( ( RR  _D  F ) `  U
)  e.  RR+  ->  ( A. y  e.  RR+  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( x  e.  ( X  \  { U } )  |->  ( ( ( F `  x
)  -  ( F `
 U ) )  /  ( x  -  U ) ) ) `
 z )  -  ( ( RR  _D  F ) `  U
) ) )  < 
y )  ->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) ) )
5611, 41, 55sylc 59 . . 3  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
571ad3antrrr 712 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  F : X --> RR )
582ad3antrrr 712 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  X  C_  RR )
5930ad3antrrr 712 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  U  e.  ( A (,) B ) )
6029ad3antrrr 712 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  ( A (,) B )  C_  X
)
615ad3antrrr 712 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  U  e.  dom  ( RR  _D  F
) )
62 dvferm2.r . . . . . . 7  |-  ( ph  ->  A. y  e.  ( A (,) U ) ( F `  y
)  <_  ( F `  U ) )
6362ad3antrrr 712 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  A. y  e.  ( A (,) U ) ( F `  y
)  <_  ( F `  U ) )
64 simpllr 737 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  ( ( RR 
_D  F ) `  U )  <  0
)
65 simplr 733 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  u  e.  RR+ )
66 simpr 449 . . . . . 6  |-  ( ( ( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )  ->  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
67 eqid 2438 . . . . . 6  |-  ( ( if ( A  <_ 
( U  -  u
) ,  ( U  -  u ) ,  A )  +  U
)  /  2 )  =  ( ( if ( A  <_  ( U  -  u ) ,  ( U  -  u ) ,  A
)  +  U )  /  2 )
6857, 58, 59, 60, 61, 63, 64, 65, 66, 67dvferm2lem 19875 . . . . 5  |-  -.  (
( ( ph  /\  ( ( RR  _D  F ) `  U
)  <  0 )  /\  u  e.  RR+ )  /\  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
6968imnani 414 . . . 4  |-  ( ( ( ph  /\  (
( RR  _D  F
) `  U )  <  0 )  /\  u  e.  RR+ )  ->  -.  A. z  e.  ( X 
\  { U }
) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  < 
u )  ->  ( abs `  ( ( ( ( F `  z
)  -  ( F `
 U ) )  /  ( z  -  U ) )  -  ( ( RR  _D  F ) `  U
) ) )  <  -u ( ( RR  _D  F ) `  U
) ) )
7069nrexdv 2811 . . 3  |-  ( (
ph  /\  ( ( RR  _D  F ) `  U )  <  0
)  ->  -.  E. u  e.  RR+  A. z  e.  ( X  \  { U } ) ( ( z  =/=  U  /\  ( abs `  ( z  -  U ) )  <  u )  -> 
( abs `  (
( ( ( F `
 z )  -  ( F `  U ) )  /  ( z  -  U ) )  -  ( ( RR 
_D  F ) `  U ) ) )  <  -u ( ( RR 
_D  F ) `  U ) ) )
7156, 70pm2.65da 561 . 2  |-  ( ph  ->  -.  ( ( RR 
_D  F ) `  U )  <  0
)
72 0re 9096 . . 3  |-  0  e.  RR
73 lenlt 9159 . . 3  |-  ( ( 0  e.  RR  /\  ( ( RR  _D  F ) `  U
)  e.  RR )  ->  ( 0  <_ 
( ( RR  _D  F ) `  U
)  <->  -.  ( ( RR  _D  F ) `  U )  <  0
) )
7472, 6, 73sylancr 646 . 2  |-  ( ph  ->  ( 0  <_  (
( RR  _D  F
) `  U )  <->  -.  ( ( RR  _D  F ) `  U
)  <  0 ) )
7571, 74mpbird 225 1  |-  ( ph  ->  0  <_  ( ( RR  _D  F ) `  U ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708    \ cdif 3319    C_ wss 3322   ifcif 3741   {csn 3816   class class class wbr 4215    e. cmpt 4269   dom cdm 4881   Fun wfun 5451   -->wf 5453   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995    + caddc 8998    < clt 9125    <_ cle 9126    - cmin 9296   -ucneg 9297    / cdiv 9682   2c2 10054   RR+crp 10617   (,)cioo 10921   abscabs 12044   ↾t crest 13653   TopOpenctopn 13654  ℂfldccnfld 16708   intcnt 17086   lim CC climc 19754    _D cdv 19755
This theorem is referenced by:  dvferm  19877  dvivthlem1  19897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-icc 10928  df-fz 11049  df-seq 11329  df-exp 11388  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-plusg 13547  df-mulr 13548  df-starv 13549  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-rest 13655  df-topn 13656  df-topgen 13672  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-fbas 16704  df-fg 16705  df-cnfld 16709  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cld 17088  df-ntr 17089  df-cls 17090  df-nei 17167  df-lp 17205  df-perf 17206  df-cn 17296  df-cnp 17297  df-haus 17384  df-fil 17883  df-fm 17975  df-flim 17976  df-flf 17977  df-xms 18355  df-ms 18356  df-cncf 18913  df-limc 19758  df-dv 19759
  Copyright terms: Public domain W3C validator