MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlimge0 Unicode version

Theorem dvfsumrlimge0 19875
Description: Lemma for dvfsumrlim 19876. Satisfy the assumption of dvfsumlem4 19874. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s  |-  S  =  ( T (,)  +oo )
dvfsum.z  |-  Z  =  ( ZZ>= `  M )
dvfsum.m  |-  ( ph  ->  M  e.  ZZ )
dvfsum.d  |-  ( ph  ->  D  e.  RR )
dvfsum.md  |-  ( ph  ->  M  <_  ( D  +  1 ) )
dvfsum.t  |-  ( ph  ->  T  e.  RR )
dvfsum.a  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
dvfsum.b1  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
dvfsum.b2  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  RR )
dvfsum.b3  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
dvfsum.c  |-  ( x  =  k  ->  B  =  C )
dvfsumrlim.l  |-  ( (
ph  /\  ( x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k ) )  ->  C  <_  B )
dvfsumrlim.g  |-  G  =  ( x  e.  S  |->  ( sum_ k  e.  ( M ... ( |_
`  x ) ) C  -  A ) )
dvfsumrlim.k  |-  ( ph  ->  ( x  e.  S  |->  B )  ~~> r  0 )
Assertion
Ref Expression
dvfsumrlimge0  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
0  <_  B )
Distinct variable groups:    B, k    x, C    x, k, D    ph, k, x    S, k, x    k, M, x   
x, T    x, Z
Allowed substitution hints:    A( x, k)    B( x)    C( k)    T( k)    G( x, k)    V( x, k)    Z( k)

Proof of Theorem dvfsumrlimge0
Dummy variables  z  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . 6  |-  S  =  ( T (,)  +oo )
2 ioossre 10936 . . . . . 6  |-  ( T (,)  +oo )  C_  RR
31, 2eqsstri 3346 . . . . 5  |-  S  C_  RR
4 simprl 733 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  x  e.  S )
53, 4sseldi 3314 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  x  e.  RR )
65rexrd 9098 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  x  e.  RR* )
75renepnfd 9099 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  x  =/=  +oo )
8 icopnfsup 11209 . . 3  |-  ( ( x  e.  RR*  /\  x  =/=  +oo )  ->  sup ( ( x [,) 
+oo ) ,  RR* ,  <  )  =  +oo )
96, 7, 8syl2anc 643 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  sup ( ( x [,) 
+oo ) ,  RR* ,  <  )  =  +oo )
10 dvfsum.t . . . . . . 7  |-  ( ph  ->  T  e.  RR )
1110rexrd 9098 . . . . . 6  |-  ( ph  ->  T  e.  RR* )
1211adantr 452 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  T  e.  RR* )
134, 1syl6eleq 2502 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  x  e.  ( T (,)  +oo ) )
14 elioopnf 10962 . . . . . . . 8  |-  ( T  e.  RR*  ->  ( x  e.  ( T (,)  +oo )  <->  ( x  e.  RR  /\  T  < 
x ) ) )
1512, 14syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( x  e.  ( T (,)  +oo )  <->  ( x  e.  RR  /\  T  <  x ) ) )
1613, 15mpbid 202 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( x  e.  RR  /\  T  <  x ) )
1716simprd 450 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  T  <  x )
18 df-ioo 10884 . . . . . 6  |-  (,)  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <  w  /\  w  <  v ) } )
19 df-ico 10886 . . . . . 6  |-  [,)  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <_  w  /\  w  <  v ) } )
20 xrltletr 10711 . . . . . 6  |-  ( ( T  e.  RR*  /\  x  e.  RR*  /\  z  e. 
RR* )  ->  (
( T  <  x  /\  x  <_  z )  ->  T  <  z
) )
2118, 19, 20ixxss1 10898 . . . . 5  |-  ( ( T  e.  RR*  /\  T  <  x )  ->  (
x [,)  +oo )  C_  ( T (,)  +oo )
)
2212, 17, 21syl2anc 643 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( x [,)  +oo )  C_  ( T (,)  +oo ) )
2322, 1syl6sseqr 3363 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( x [,)  +oo )  C_  S )
24 dvfsum.c . . . . 5  |-  ( x  =  k  ->  B  =  C )
2524cbvmptv 4268 . . . 4  |-  ( x  e.  S  |->  B )  =  ( k  e.  S  |->  C )
26 dvfsumrlim.k . . . . 5  |-  ( ph  ->  ( x  e.  S  |->  B )  ~~> r  0 )
2726adantr 452 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( x  e.  S  |->  B )  ~~> r  0 )
2825, 27syl5eqbrr 4214 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( k  e.  S  |->  C )  ~~> r  0 )
2923, 28rlimres2 12318 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( k  e.  ( x [,)  +oo )  |->  C )  ~~> r  0 )
303a1i 11 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  S  C_  RR )
313a1i 11 . . . . . . 7  |-  ( ph  ->  S  C_  RR )
32 dvfsum.a . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
33 dvfsum.b1 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
34 dvfsum.b3 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
3531, 32, 33, 34dvmptrecl 19869 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  RR )
3635adantrr 698 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  B  e.  RR )
3736recnd 9078 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  B  e.  CC )
38 rlimconst 12301 . . . 4  |-  ( ( S  C_  RR  /\  B  e.  CC )  ->  (
k  e.  S  |->  B )  ~~> r  B )
3930, 37, 38syl2anc 643 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( k  e.  S  |->  B )  ~~> r  B
)
4023, 39rlimres2 12318 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( k  e.  ( x [,)  +oo )  |->  B )  ~~> r  B
)
4123sselda 3316 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  k  e.  S )
4235ralrimiva 2757 . . . . 5  |-  ( ph  ->  A. x  e.  S  B  e.  RR )
4342adantr 452 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  A. x  e.  S  B  e.  RR )
4424eleq1d 2478 . . . . 5  |-  ( x  =  k  ->  ( B  e.  RR  <->  C  e.  RR ) )
4544rspccva 3019 . . . 4  |-  ( ( A. x  e.  S  B  e.  RR  /\  k  e.  S )  ->  C  e.  RR )
4643, 45sylan 458 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  S
)  ->  C  e.  RR )
4741, 46syldan 457 . 2  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  C  e.  RR )
4836adantr 452 . 2  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  B  e.  RR )
49 simpll 731 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  ph )
50 simplrl 737 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  x  e.  S )
51 simplrr 738 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  D  <_  x )
52 elicopnf 10964 . . . . 5  |-  ( x  e.  RR  ->  (
k  e.  ( x [,)  +oo )  <->  ( k  e.  RR  /\  x  <_ 
k ) ) )
535, 52syl 16 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( k  e.  ( x [,)  +oo )  <->  ( k  e.  RR  /\  x  <_  k ) ) )
5453simplbda 608 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  x  <_  k )
55 dvfsumrlim.l . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k ) )  ->  C  <_  B )
5649, 50, 41, 51, 54, 55syl122anc 1193 . 2  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  C  <_  B )
579, 29, 40, 47, 48, 56rlimle 12404 1  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
0  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   A.wral 2674    C_ wss 3288   class class class wbr 4180    e. cmpt 4234   ` cfv 5421  (class class class)co 6048   supcsup 7411   CCcc 8952   RRcr 8953   0cc0 8954   1c1 8955    + caddc 8957    +oocpnf 9081   RR*cxr 9083    < clt 9084    <_ cle 9085    - cmin 9255   ZZcz 10246   ZZ>=cuz 10452   (,)cioo 10880   [,)cico 10882   ...cfz 11007   |_cfl 11164    ~~> r crli 12242   sum_csu 12442    _D cdv 19711
This theorem is referenced by:  dvfsumrlim  19876  dvfsumrlim2  19877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-pm 6988  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-fi 7382  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-4 10024  df-5 10025  df-6 10026  df-7 10027  df-8 10028  df-9 10029  df-10 10030  df-n0 10186  df-z 10247  df-dec 10347  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-ioo 10884  df-ico 10886  df-icc 10887  df-fz 11008  df-seq 11287  df-exp 11346  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-rlim 12246  df-struct 13434  df-ndx 13435  df-slot 13436  df-base 13437  df-plusg 13505  df-mulr 13506  df-starv 13507  df-tset 13511  df-ple 13512  df-ds 13514  df-unif 13515  df-rest 13613  df-topn 13614  df-topgen 13630  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660  df-mopn 16661  df-fbas 16662  df-fg 16663  df-cnfld 16667  df-top 16926  df-bases 16928  df-topon 16929  df-topsp 16930  df-cld 17046  df-ntr 17047  df-cls 17048  df-nei 17125  df-lp 17163  df-perf 17164  df-cn 17253  df-cnp 17254  df-haus 17341  df-fil 17839  df-fm 17931  df-flim 17932  df-flf 17933  df-xms 18311  df-ms 18312  df-cncf 18869  df-limc 19714  df-dv 19715
  Copyright terms: Public domain W3C validator