MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumrlimge0 Structured version   Unicode version

Theorem dvfsumrlimge0 19914
Description: Lemma for dvfsumrlim 19915. Satisfy the assumption of dvfsumlem4 19913. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
dvfsum.s  |-  S  =  ( T (,)  +oo )
dvfsum.z  |-  Z  =  ( ZZ>= `  M )
dvfsum.m  |-  ( ph  ->  M  e.  ZZ )
dvfsum.d  |-  ( ph  ->  D  e.  RR )
dvfsum.md  |-  ( ph  ->  M  <_  ( D  +  1 ) )
dvfsum.t  |-  ( ph  ->  T  e.  RR )
dvfsum.a  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
dvfsum.b1  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
dvfsum.b2  |-  ( (
ph  /\  x  e.  Z )  ->  B  e.  RR )
dvfsum.b3  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
dvfsum.c  |-  ( x  =  k  ->  B  =  C )
dvfsumrlim.l  |-  ( (
ph  /\  ( x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k ) )  ->  C  <_  B )
dvfsumrlim.g  |-  G  =  ( x  e.  S  |->  ( sum_ k  e.  ( M ... ( |_
`  x ) ) C  -  A ) )
dvfsumrlim.k  |-  ( ph  ->  ( x  e.  S  |->  B )  ~~> r  0 )
Assertion
Ref Expression
dvfsumrlimge0  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
0  <_  B )
Distinct variable groups:    B, k    x, C    x, k, D    ph, k, x    S, k, x    k, M, x   
x, T    x, Z
Allowed substitution hints:    A( x, k)    B( x)    C( k)    T( k)    G( x, k)    V( x, k)    Z( k)

Proof of Theorem dvfsumrlimge0
Dummy variables  z  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvfsum.s . . . . . 6  |-  S  =  ( T (,)  +oo )
2 ioossre 10972 . . . . . 6  |-  ( T (,)  +oo )  C_  RR
31, 2eqsstri 3378 . . . . 5  |-  S  C_  RR
4 simprl 733 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  x  e.  S )
53, 4sseldi 3346 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  x  e.  RR )
65rexrd 9134 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  x  e.  RR* )
75renepnfd 9135 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  x  =/=  +oo )
8 icopnfsup 11246 . . 3  |-  ( ( x  e.  RR*  /\  x  =/=  +oo )  ->  sup ( ( x [,) 
+oo ) ,  RR* ,  <  )  =  +oo )
96, 7, 8syl2anc 643 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  sup ( ( x [,) 
+oo ) ,  RR* ,  <  )  =  +oo )
10 dvfsum.t . . . . . . 7  |-  ( ph  ->  T  e.  RR )
1110rexrd 9134 . . . . . 6  |-  ( ph  ->  T  e.  RR* )
1211adantr 452 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  T  e.  RR* )
134, 1syl6eleq 2526 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  x  e.  ( T (,)  +oo ) )
14 elioopnf 10998 . . . . . . . 8  |-  ( T  e.  RR*  ->  ( x  e.  ( T (,)  +oo )  <->  ( x  e.  RR  /\  T  < 
x ) ) )
1512, 14syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( x  e.  ( T (,)  +oo )  <->  ( x  e.  RR  /\  T  <  x ) ) )
1613, 15mpbid 202 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( x  e.  RR  /\  T  <  x ) )
1716simprd 450 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  T  <  x )
18 df-ioo 10920 . . . . . 6  |-  (,)  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <  w  /\  w  <  v ) } )
19 df-ico 10922 . . . . . 6  |-  [,)  =  ( u  e.  RR* ,  v  e.  RR*  |->  { w  e.  RR*  |  ( u  <_  w  /\  w  <  v ) } )
20 xrltletr 10747 . . . . . 6  |-  ( ( T  e.  RR*  /\  x  e.  RR*  /\  z  e. 
RR* )  ->  (
( T  <  x  /\  x  <_  z )  ->  T  <  z
) )
2118, 19, 20ixxss1 10934 . . . . 5  |-  ( ( T  e.  RR*  /\  T  <  x )  ->  (
x [,)  +oo )  C_  ( T (,)  +oo )
)
2212, 17, 21syl2anc 643 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( x [,)  +oo )  C_  ( T (,)  +oo ) )
2322, 1syl6sseqr 3395 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( x [,)  +oo )  C_  S )
24 dvfsum.c . . . . 5  |-  ( x  =  k  ->  B  =  C )
2524cbvmptv 4300 . . . 4  |-  ( x  e.  S  |->  B )  =  ( k  e.  S  |->  C )
26 dvfsumrlim.k . . . . 5  |-  ( ph  ->  ( x  e.  S  |->  B )  ~~> r  0 )
2726adantr 452 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( x  e.  S  |->  B )  ~~> r  0 )
2825, 27syl5eqbrr 4246 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( k  e.  S  |->  C )  ~~> r  0 )
2923, 28rlimres2 12355 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( k  e.  ( x [,)  +oo )  |->  C )  ~~> r  0 )
303a1i 11 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  S  C_  RR )
313a1i 11 . . . . . . 7  |-  ( ph  ->  S  C_  RR )
32 dvfsum.a . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
33 dvfsum.b1 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  V )
34 dvfsum.b3 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  S  |->  A ) )  =  ( x  e.  S  |->  B ) )
3531, 32, 33, 34dvmptrecl 19908 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  B  e.  RR )
3635adantrr 698 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  B  e.  RR )
3736recnd 9114 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  B  e.  CC )
38 rlimconst 12338 . . . 4  |-  ( ( S  C_  RR  /\  B  e.  CC )  ->  (
k  e.  S  |->  B )  ~~> r  B )
3930, 37, 38syl2anc 643 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( k  e.  S  |->  B )  ~~> r  B
)
4023, 39rlimres2 12355 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( k  e.  ( x [,)  +oo )  |->  B )  ~~> r  B
)
4123sselda 3348 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  k  e.  S )
4235ralrimiva 2789 . . . . 5  |-  ( ph  ->  A. x  e.  S  B  e.  RR )
4342adantr 452 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  ->  A. x  e.  S  B  e.  RR )
4424eleq1d 2502 . . . . 5  |-  ( x  =  k  ->  ( B  e.  RR  <->  C  e.  RR ) )
4544rspccva 3051 . . . 4  |-  ( ( A. x  e.  S  B  e.  RR  /\  k  e.  S )  ->  C  e.  RR )
4643, 45sylan 458 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  S
)  ->  C  e.  RR )
4741, 46syldan 457 . 2  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  C  e.  RR )
4836adantr 452 . 2  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  B  e.  RR )
49 simpll 731 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  ph )
50 simplrl 737 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  x  e.  S )
51 simplrr 738 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  D  <_  x )
52 elicopnf 11000 . . . . 5  |-  ( x  e.  RR  ->  (
k  e.  ( x [,)  +oo )  <->  ( k  e.  RR  /\  x  <_ 
k ) ) )
535, 52syl 16 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
( k  e.  ( x [,)  +oo )  <->  ( k  e.  RR  /\  x  <_  k ) ) )
5453simplbda 608 . . 3  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  x  <_  k )
55 dvfsumrlim.l . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  k  e.  S )  /\  ( D  <_  x  /\  x  <_  k ) )  ->  C  <_  B )
5649, 50, 41, 51, 54, 55syl122anc 1193 . 2  |-  ( ( ( ph  /\  (
x  e.  S  /\  D  <_  x ) )  /\  k  e.  ( x [,)  +oo )
)  ->  C  <_  B )
579, 29, 40, 47, 48, 56rlimle 12441 1  |-  ( (
ph  /\  ( x  e.  S  /\  D  <_  x ) )  -> 
0  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705    C_ wss 3320   class class class wbr 4212    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   supcsup 7445   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    +oocpnf 9117   RR*cxr 9119    < clt 9120    <_ cle 9121    - cmin 9291   ZZcz 10282   ZZ>=cuz 10488   (,)cioo 10916   [,)cico 10918   ...cfz 11043   |_cfl 11201    ~~> r crli 12279   sum_csu 12479    _D cdv 19750
This theorem is referenced by:  dvfsumrlim  19915  dvfsumrlim2  19916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ico 10922  df-icc 10923  df-fz 11044  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-rlim 12283  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-plusg 13542  df-mulr 13543  df-starv 13544  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-rest 13650  df-topn 13651  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-cncf 18908  df-limc 19753  df-dv 19754
  Copyright terms: Public domain W3C validator