MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfval Structured version   Unicode version

Theorem dvfval 19786
Description: Value and set bounds on the derivative operator. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
dvval.t  |-  T  =  ( Kt  S )
dvval.k  |-  K  =  ( TopOpen ` fld )
Assertion
Ref Expression
dvfval  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
Distinct variable groups:    x, z, A    x, F, z    x, K, z    x, S, z   
x, T
Allowed substitution hint:    T( z)

Proof of Theorem dvfval
Dummy variables  f 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dv 19756 . . . 4  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
21a1i 11 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  _D  =  ( s  e. 
~P CC ,  f  e.  ( CC  ^pm  s )  |->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) ) )
3 dvval.k . . . . . . . 8  |-  K  =  ( TopOpen ` fld )
43oveq1i 6093 . . . . . . 7  |-  ( Kt  s )  =  ( (
TopOpen ` fld )t  s )
5 simprl 734 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  s  =  S )
65oveq2d 6099 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( Kt  s )  =  ( Kt  S ) )
7 dvval.t . . . . . . . 8  |-  T  =  ( Kt  S )
86, 7syl6eqr 2488 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( Kt  s )  =  T )
94, 8syl5eqr 2484 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( TopOpen ` fld )t  s )  =  T )
109fveq2d 5734 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( int `  ( ( TopOpen ` fld )t  s
) )  =  ( int `  T ) )
11 simprr 735 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  f  =  F )
1211dmeqd 5074 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  f  =  dom  F )
13 simpl2 962 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  F : A --> CC )
14 fdm 5597 . . . . . . 7  |-  ( F : A --> CC  ->  dom 
F  =  A )
1513, 14syl 16 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  F  =  A )
1612, 15eqtrd 2470 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  dom  f  =  A )
1710, 16fveq12d 5736 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )  =  ( ( int `  T ) `  A
) )
1816difeq1d 3466 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( dom  f  \  { x } )  =  ( A  \  { x } ) )
1911fveq1d 5732 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
f `  z )  =  ( F `  z ) )
2011fveq1d 5732 . . . . . . . . 9  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
f `  x )  =  ( F `  x ) )
2119, 20oveq12d 6101 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( f `  z
)  -  ( f `
 x ) )  =  ( ( F `
 z )  -  ( F `  x ) ) )
2221oveq1d 6098 . . . . . . 7  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( ( f `  z )  -  (
f `  x )
)  /  ( z  -  x ) )  =  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )
2318, 22mpteq12dv 4289 . . . . . 6  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
z  e.  ( dom  f  \  { x } )  |->  ( ( ( f `  z
)  -  ( f `
 x ) )  /  ( z  -  x ) ) )  =  ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) )
2423oveq1d 6098 . . . . 5  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  (
( z  e.  ( dom  f  \  {
x } )  |->  ( ( ( f `  z )  -  (
f `  x )
)  /  ( z  -  x ) ) ) lim CC  x )  =  ( ( z  e.  ( A  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
2524xpeq2d 4904 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  ( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )  =  ( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) )
2617, 25iuneq12d 4119 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  ( s  =  S  /\  f  =  F ) )  ->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )  =  U_ x  e.  ( ( int `  T ) `  A ) ( { x }  X.  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) )
27 simpr 449 . . . 4  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  s  =  S )  ->  s  =  S )
2827oveq2d 6099 . . 3  |-  ( ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  /\  s  =  S )  ->  ( CC  ^pm  s
)  =  ( CC 
^pm  S ) )
29 simp1 958 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  C_  CC )
30 cnex 9073 . . . . 5  |-  CC  e.  _V
3130elpw2 4366 . . . 4  |-  ( S  e.  ~P CC  <->  S  C_  CC )
3229, 31sylibr 205 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  S  e.  ~P CC )
3330a1i 11 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  CC  e.  _V )
34 simp2 959 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F : A --> CC )
35 simp3 960 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  A  C_  S )
36 elpm2r 7036 . . . 4  |-  ( ( ( CC  e.  _V  /\  S  e.  ~P CC )  /\  ( F : A
--> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm 
S ) )
3733, 32, 34, 35, 36syl22anc 1186 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  F  e.  ( CC  ^pm  S
) )
38 limccl 19764 . . . . . . . . 9  |-  ( ( z  e.  ( A 
\  { x }
)  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  C_  CC
39 xpss2 4987 . . . . . . . . 9  |-  ( ( ( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  C_  CC  ->  ( { x }  X.  ( ( z  e.  ( A  \  { x } ) 
|->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( {
x }  X.  CC ) )
4038, 39ax-mp 8 . . . . . . . 8  |-  ( { x }  X.  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( { x }  X.  CC )
4140rgenw 2775 . . . . . . 7  |-  A. x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( {
x }  X.  CC )
42 ss2iun 4110 . . . . . . 7  |-  ( A. x  e.  ( ( int `  T ) `  A ) ( { x }  X.  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( { x }  X.  CC )  ->  U_ x  e.  (
( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  C_  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC ) )
4341, 42ax-mp 8 . . . . . 6  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  C_  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC )
44 iunxpconst 4936 . . . . . 6  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  CC )  =  ( ( ( int `  T
) `  A )  X.  CC )
4543, 44sseqtri 3382 . . . . 5  |-  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( (
( int `  T
) `  A )  X.  CC )
4645a1i 11 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( (
( int `  T
) `  A )  X.  CC ) )
47 fvex 5744 . . . . . 6  |-  ( ( int `  T ) `
 A )  e. 
_V
4847, 30xpex 4992 . . . . 5  |-  ( ( ( int `  T
) `  A )  X.  CC )  e.  _V
4948ssex 4349 . . . 4  |-  ( U_ x  e.  ( ( int `  T ) `  A ) ( { x }  X.  (
( z  e.  ( A  \  { x } )  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) 
C_  ( ( ( int `  T ) `
 A )  X.  CC )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  e.  _V )
5046, 49syl 16 . . 3  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  e.  _V )
512, 26, 28, 32, 37, 50ovmpt2dx 6202 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( S  _D  F )  = 
U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) ) )
5251, 46eqsstrd 3384 . 2  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) )
5351, 52jca 520 1  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  T
) `  A )
( { x }  X.  ( ( z  e.  ( A  \  {
x } )  |->  ( ( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  T ) `  A
)  X.  CC ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958    \ cdif 3319    C_ wss 3322   ~Pcpw 3801   {csn 3816   U_ciun 4095    e. cmpt 4268    X. cxp 4878   dom cdm 4880   -->wf 5452   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085    ^pm cpm 7021   CCcc 8990    - cmin 9293    / cdiv 9679   ↾t crest 13650   TopOpenctopn 13651  ℂfldccnfld 16705   intcnt 17083   lim CC climc 19751    _D cdv 19752
This theorem is referenced by:  eldv  19787  dvbssntr  19789
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-fz 11046  df-seq 11326  df-exp 11385  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-plusg 13544  df-mulr 13545  df-starv 13546  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-rest 13652  df-topn 13653  df-topgen 13669  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cnp 17294  df-xms 18352  df-ms 18353  df-limc 19755  df-dv 19756
  Copyright terms: Public domain W3C validator