Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhfset Unicode version

Theorem dvhfset 31892
Description: The constructed full vector space H for a lattice  K. (Contributed by NM, 17-Oct-2013.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypothesis
Ref Expression
dvhset.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
dvhfset  |-  ( K  e.  V  ->  ( DVecH `  K )  =  ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) ,  g  e.  ( ( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) ) )
Distinct variable groups:    f, g, w, H    f, h, s, K, g, w
Allowed substitution hints:    H( h, s)    V( w, f, g, h, s)

Proof of Theorem dvhfset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2809 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 fveq2 5541 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 dvhset.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2346 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5541 . . . . . . . . 9  |-  ( k  =  K  ->  ( LTrn `  k )  =  ( LTrn `  K
) )
65fveq1d 5543 . . . . . . . 8  |-  ( k  =  K  ->  (
( LTrn `  k ) `  w )  =  ( ( LTrn `  K
) `  w )
)
7 fveq2 5541 . . . . . . . . 9  |-  ( k  =  K  ->  ( TEndo `  k )  =  ( TEndo `  K )
)
87fveq1d 5543 . . . . . . . 8  |-  ( k  =  K  ->  (
( TEndo `  k ) `  w )  =  ( ( TEndo `  K ) `  w ) )
96, 8xpeq12d 4730 . . . . . . 7  |-  ( k  =  K  ->  (
( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
)  =  ( ( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
) )
109opeq2d 3819 . . . . . 6  |-  ( k  =  K  ->  <. ( Base `  ndx ) ,  ( ( ( LTrn `  k ) `  w
)  X.  ( (
TEndo `  k ) `  w ) ) >.  =  <. ( Base `  ndx ) ,  ( (
( LTrn `  K ) `  w )  X.  (
( TEndo `  K ) `  w ) ) >.
)
11 eqidd 2297 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( ( 2nd `  f
) `  h )  o.  ( ( 2nd `  g
) `  h )
)  =  ( ( ( 2nd `  f
) `  h )  o.  ( ( 2nd `  g
) `  h )
) )
126, 11mpteq12dv 4114 . . . . . . . . 9  |-  ( k  =  K  ->  (
h  e.  ( (
LTrn `  k ) `  w )  |->  ( ( ( 2nd `  f
) `  h )  o.  ( ( 2nd `  g
) `  h )
) )  =  ( h  e.  ( (
LTrn `  K ) `  w )  |->  ( ( ( 2nd `  f
) `  h )  o.  ( ( 2nd `  g
) `  h )
) ) )
1312opeq2d 3819 . . . . . . . 8  |-  ( k  =  K  ->  <. (
( 1st `  f
)  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  k
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >.  =  <. ( ( 1st `  f
)  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. )
149, 9, 13mpt2eq123dv 5926 . . . . . . 7  |-  ( k  =  K  ->  (
f  e.  ( ( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
) ,  g  e.  ( ( ( LTrn `  k ) `  w
)  X.  ( (
TEndo `  k ) `  w ) )  |->  <.
( ( 1st `  f
)  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  k
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. )  =  ( f  e.  ( ( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
) ,  g  e.  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) )  |->  <.
( ( 1st `  f
)  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) )
1514opeq2d 3819 . . . . . 6  |-  ( k  =  K  ->  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
) ,  g  e.  ( ( ( LTrn `  k ) `  w
)  X.  ( (
TEndo `  k ) `  w ) )  |->  <.
( ( 1st `  f
)  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  k
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >.  =  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) ,  g  e.  ( ( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. )
16 fveq2 5541 . . . . . . . 8  |-  ( k  =  K  ->  ( EDRing `
 k )  =  ( EDRing `  K )
)
1716fveq1d 5543 . . . . . . 7  |-  ( k  =  K  ->  (
( EDRing `  k ) `  w )  =  ( ( EDRing `  K ) `  w ) )
1817opeq2d 3819 . . . . . 6  |-  ( k  =  K  ->  <. (Scalar ` 
ndx ) ,  ( ( EDRing `  k ) `  w ) >.  =  <. (Scalar `  ndx ) ,  ( ( EDRing `  K ) `  w ) >. )
1910, 15, 18tpeq123d 3734 . . . . 5  |-  ( k  =  K  ->  { <. (
Base `  ndx ) ,  ( ( ( LTrn `  k ) `  w
)  X.  ( (
TEndo `  k ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  k ) `  w
)  X.  ( (
TEndo `  k ) `  w ) ) ,  g  e.  ( ( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  k
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  k ) `  w ) >. }  =  { <. ( Base `  ndx ) ,  ( (
( LTrn `  K ) `  w )  X.  (
( TEndo `  K ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) ,  g  e.  ( ( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  K ) `  w ) >. } )
20 eqidd 2297 . . . . . . . 8  |-  ( k  =  K  ->  <. (
s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f ) )
>.  =  <. ( s `
 ( 1st `  f
) ) ,  ( s  o.  ( 2nd `  f ) ) >.
)
218, 9, 20mpt2eq123dv 5926 . . . . . . 7  |-  ( k  =  K  ->  (
s  e.  ( (
TEndo `  k ) `  w ) ,  f  e.  ( ( (
LTrn `  k ) `  w )  X.  (
( TEndo `  k ) `  w ) )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )  =  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
)
2221opeq2d 3819 . . . . . 6  |-  ( k  =  K  ->  <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  k ) `  w ) ,  f  e.  ( ( (
LTrn `  k ) `  w )  X.  (
( TEndo `  k ) `  w ) )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >.  =  <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K ) `  w
) ,  f  e.  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. )
2322sneqd 3666 . . . . 5  |-  ( k  =  K  ->  { <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  k
) `  w ) ,  f  e.  (
( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. }  =  { <. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } )
2419, 23uneq12d 3343 . . . 4  |-  ( k  =  K  ->  ( { <. ( Base `  ndx ) ,  ( (
( LTrn `  k ) `  w )  X.  (
( TEndo `  k ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  k ) `  w
)  X.  ( (
TEndo `  k ) `  w ) ) ,  g  e.  ( ( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  k
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  k ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  k
) `  w ) ,  f  e.  (
( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } )  =  ( { <. ( Base `  ndx ) ,  ( (
( LTrn `  K ) `  w )  X.  (
( TEndo `  K ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) ,  g  e.  ( ( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) )
254, 24mpteq12dv 4114 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( {
<. ( Base `  ndx ) ,  ( (
( LTrn `  k ) `  w )  X.  (
( TEndo `  k ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  k ) `  w
)  X.  ( (
TEndo `  k ) `  w ) ) ,  g  e.  ( ( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  k
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  k ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  k
) `  w ) ,  f  e.  (
( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) )  =  ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) ,  g  e.  ( ( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) ) )
26 df-dvech 31891 . . 3  |-  DVecH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( {
<. ( Base `  ndx ) ,  ( (
( LTrn `  k ) `  w )  X.  (
( TEndo `  k ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  k ) `  w
)  X.  ( (
TEndo `  k ) `  w ) ) ,  g  e.  ( ( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  k
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  k ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  k
) `  w ) ,  f  e.  (
( ( LTrn `  k
) `  w )  X.  ( ( TEndo `  k
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) ) )
27 fvex 5555 . . . . 5  |-  ( LHyp `  K )  e.  _V
283, 27eqeltri 2366 . . . 4  |-  H  e. 
_V
2928mptex 5762 . . 3  |-  ( w  e.  H  |->  ( {
<. ( Base `  ndx ) ,  ( (
( LTrn `  K ) `  w )  X.  (
( TEndo `  K ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) ,  g  e.  ( ( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) )  e. 
_V
3025, 26, 29fvmpt 5618 . 2  |-  ( K  e.  _V  ->  ( DVecH `  K )  =  ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) ,  g  e.  ( ( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) ) )
311, 30syl 15 1  |-  ( K  e.  V  ->  ( DVecH `  K )  =  ( w  e.  H  |->  ( { <. ( Base `  ndx ) ,  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( ( LTrn `  K ) `  w
)  X.  ( (
TEndo `  K ) `  w ) ) ,  g  e.  ( ( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( ( 1st `  f )  o.  ( 1st `  g ) ) ,  ( h  e.  ( ( LTrn `  K
) `  w )  |->  ( ( ( 2nd `  f ) `  h
)  o.  ( ( 2nd `  g ) `
 h ) ) ) >. ) >. ,  <. (Scalar `  ndx ) ,  ( ( EDRing `  K ) `  w ) >. }  u.  {
<. ( .s `  ndx ) ,  ( s  e.  ( ( TEndo `  K
) `  w ) ,  f  e.  (
( ( LTrn `  K
) `  w )  X.  ( ( TEndo `  K
) `  w )
)  |->  <. ( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. ) >. } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163   {csn 3653   {ctp 3655   <.cop 3656    e. cmpt 4093    X. cxp 4703    o. ccom 4709   ` cfv 5271    e. cmpt2 5876   1stc1st 6136   2ndc2nd 6137   ndxcnx 13161   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   .scvsca 13228   LHypclh 30795   LTrncltrn 30912   TEndoctendo 31563   EDRingcedring 31564   DVecHcdvh 31890
This theorem is referenced by:  dvhset  31893
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-oprab 5878  df-mpt2 5879  df-dvech 31891
  Copyright terms: Public domain W3C validator