Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopellsm Unicode version

Theorem dvhopellsm 31600
Description: Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.)
Hypotheses
Ref Expression
dvhopellsm.h  |-  H  =  ( LHyp `  K
)
dvhopellsm.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhopellsm.a  |-  .+  =  ( +g  `  U )
dvhopellsm.s  |-  S  =  ( LSubSp `  U )
dvhopellsm.p  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dvhopellsm  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. x E. y E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
Distinct variable groups:    x, w, y, z,  .+    w, F, x, y, z    x, H, y    x, K, y   
x, S, y    w, T, x, y, z    x, W, y    w, X, x, y, z    w, Y, x, y, z
Allowed substitution hints:    .(+) ( x, y,
z, w)    S( z, w)    U( x, y, z, w)    H( z, w)    K( z, w)    W( z, w)

Proof of Theorem dvhopellsm
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhopellsm.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
2 dvhopellsm.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
3 id 20 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3dvhlmod 31593 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LMod )
543ad2ant1 978 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  U  e.  LMod )
6 dvhopellsm.s . . . . . 6  |-  S  =  ( LSubSp `  U )
76lsssssubg 15989 . . . . 5  |-  ( U  e.  LMod  ->  S  C_  (SubGrp `  U ) )
85, 7syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  S  C_  (SubGrp `  U ) )
9 simp2 958 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  e.  S )
108, 9sseldd 3309 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  e.  (SubGrp `  U ) )
11 simp3 959 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  e.  S )
128, 11sseldd 3309 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  e.  (SubGrp `  U ) )
13 dvhopellsm.a . . . 4  |-  .+  =  ( +g  `  U )
14 dvhopellsm.p . . . 4  |-  .(+)  =  (
LSSum `  U )
1513, 14lsmelval 15238 . . 3  |-  ( ( X  e.  (SubGrp `  U )  /\  Y  e.  (SubGrp `  U )
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v ) ) )
1610, 12, 15syl2anc 643 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v ) ) )
17 eqid 2404 . . . . . . . 8  |-  ( Base `  U )  =  (
Base `  U )
1817, 6lssss 15968 . . . . . . 7  |-  ( Y  e.  S  ->  Y  C_  ( Base `  U
) )
19183ad2ant3 980 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  C_  ( Base `  U ) )
20 eqid 2404 . . . . . . . 8  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
21 eqid 2404 . . . . . . . 8  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
221, 20, 21, 2, 17dvhvbase 31570 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
23223ad2ant1 978 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( Base `  U )  =  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
2419, 23sseqtrd 3344 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  C_  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
25 relxp 4942 . . . . 5  |-  Rel  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)
26 relss 4922 . . . . 5  |-  ( Y 
C_  ( ( (
LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  -> 
( Rel  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  ->  Rel  Y ) )
2724, 25, 26ee10 1382 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Rel  Y )
28 oveq2 6048 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  ( u  .+  v )  =  ( u  .+  <. z ,  w >. ) )
2928eqeq2d 2415 . . . . 5  |-  ( v  =  <. z ,  w >.  ->  ( <. F ,  T >.  =  ( u 
.+  v )  <->  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) )
3029exopxfr2 6370 . . . 4  |-  ( Rel 
Y  ->  ( E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3127, 30syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3231rexbidv 2687 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. u  e.  X  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3317, 6lssss 15968 . . . . . . 7  |-  ( X  e.  S  ->  X  C_  ( Base `  U
) )
34333ad2ant2 979 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  C_  ( Base `  U ) )
3534, 23sseqtrd 3344 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  C_  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
36 relss 4922 . . . . 5  |-  ( X 
C_  ( ( (
LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  -> 
( Rel  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  ->  Rel  X ) )
3735, 25, 36ee10 1382 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Rel  X )
38 oveq1 6047 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( u  .+  <.
z ,  w >. )  =  ( <. x ,  y >.  .+  <. z ,  w >. )
)
3938eqeq2d 2415 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( <. F ,  T >.  =  ( u 
.+  <. z ,  w >. )  <->  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )
4039anbi2d 685 . . . . . 6  |-  ( u  =  <. x ,  y
>.  ->  ( ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) ) )
41402exbidv 1635 . . . . 5  |-  ( u  =  <. x ,  y
>.  ->  ( E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u  .+  <.
z ,  w >. ) )  <->  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
4241exopxfr2 6370 . . . 4  |-  ( Rel 
X  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) ) )
4337, 42syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) ) )
44 19.42vv 1926 . . . . 5  |-  ( E. z E. w (
<. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
45 anass 631 . . . . . . . 8  |-  ( ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) )  <->  ( <. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
46452exbii 1590 . . . . . . 7  |-  ( E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) )  <->  E. z E. w ( <. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
4746bicomi 194 . . . . . 6  |-  ( E. z E. w (
<. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )
4847a1i 11 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. z E. w ( <.
x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
4944, 48syl5bbr 251 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( ( <. x ,  y >.  e.  X  /\  E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
50492exbidv 1635 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. x E. y ( <.
x ,  y >.  e.  X  /\  E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )  <->  E. x E. y E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
5143, 50bitrd 245 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
5216, 32, 513bitrd 271 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. x E. y E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721   E.wrex 2667    C_ wss 3280   <.cop 3777    X. cxp 4835   Rel wrel 4842   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484  SubGrpcsubg 14893   LSSumclsm 15223   LModclmod 15905   LSubSpclss 15963   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   TEndoctendo 31234   DVecHcdvh 31561
This theorem is referenced by:  diblsmopel  31654  dihopelvalcpre  31731  xihopellsmN  31737  dihopellsm  31738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-mnd 14645  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-lsm 15225  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-drng 15792  df-lmod 15907  df-lss 15964  df-lvec 16130  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tendo 31237  df-edring 31239  df-dvech 31562
  Copyright terms: Public domain W3C validator