Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopellsm Unicode version

Theorem dvhopellsm 31307
Description: Ordered pair membership in a subspace sum. (Contributed by NM, 12-Mar-2014.)
Hypotheses
Ref Expression
dvhopellsm.h  |-  H  =  ( LHyp `  K
)
dvhopellsm.u  |-  U  =  ( ( DVecH `  K
) `  W )
dvhopellsm.a  |-  .+  =  ( +g  `  U )
dvhopellsm.s  |-  S  =  ( LSubSp `  U )
dvhopellsm.p  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dvhopellsm  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. x E. y E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
Distinct variable groups:    x, w, y, z,  .+    w, F, x, y, z    x, H, y    x, K, y   
x, S, y    w, T, x, y, z    x, W, y    w, X, x, y, z    w, Y, x, y, z
Allowed substitution hints:    .(+) ( x, y,
z, w)    S( z, w)    U( x, y, z, w)    H( z, w)    K( z, w)    W( z, w)

Proof of Theorem dvhopellsm
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhopellsm.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
2 dvhopellsm.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
3 id 19 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3dvhlmod 31300 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  U  e.  LMod )
543ad2ant1 976 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  U  e.  LMod )
6 dvhopellsm.s . . . . . 6  |-  S  =  ( LSubSp `  U )
76lsssssubg 15715 . . . . 5  |-  ( U  e.  LMod  ->  S  C_  (SubGrp `  U ) )
85, 7syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  S  C_  (SubGrp `  U ) )
9 simp2 956 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  e.  S )
108, 9sseldd 3181 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  e.  (SubGrp `  U ) )
11 simp3 957 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  e.  S )
128, 11sseldd 3181 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  e.  (SubGrp `  U ) )
13 dvhopellsm.a . . . 4  |-  .+  =  ( +g  `  U )
14 dvhopellsm.p . . . 4  |-  .(+)  =  (
LSSum `  U )
1513, 14lsmelval 14960 . . 3  |-  ( ( X  e.  (SubGrp `  U )  /\  Y  e.  (SubGrp `  U )
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v ) ) )
1610, 12, 15syl2anc 642 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v ) ) )
17 eqid 2283 . . . . . . . 8  |-  ( Base `  U )  =  (
Base `  U )
1817, 6lssss 15694 . . . . . . 7  |-  ( Y  e.  S  ->  Y  C_  ( Base `  U
) )
19183ad2ant3 978 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  C_  ( Base `  U ) )
20 eqid 2283 . . . . . . . 8  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
21 eqid 2283 . . . . . . . 8  |-  ( (
TEndo `  K ) `  W )  =  ( ( TEndo `  K ) `  W )
221, 20, 21, 2, 17dvhvbase 31277 . . . . . . 7  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( Base `  U
)  =  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
23223ad2ant1 976 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( Base `  U )  =  ( ( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
2419, 23sseqtrd 3214 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Y  C_  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
25 relxp 4794 . . . . 5  |-  Rel  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
)
26 relss 4775 . . . . 5  |-  ( Y 
C_  ( ( (
LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  -> 
( Rel  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  ->  Rel  Y ) )
2724, 25, 26ee10 1366 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Rel  Y )
28 oveq2 5866 . . . . . 6  |-  ( v  =  <. z ,  w >.  ->  ( u  .+  v )  =  ( u  .+  <. z ,  w >. ) )
2928eqeq2d 2294 . . . . 5  |-  ( v  =  <. z ,  w >.  ->  ( <. F ,  T >.  =  ( u 
.+  v )  <->  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) )
3029exopxfr2 6184 . . . 4  |-  ( Rel 
Y  ->  ( E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3127, 30syl 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3231rexbidv 2564 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. v  e.  Y  <. F ,  T >.  =  ( u  .+  v )  <->  E. u  e.  X  E. z E. w (
<. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) ) ) )
3317, 6lssss 15694 . . . . . . 7  |-  ( X  e.  S  ->  X  C_  ( Base `  U
) )
34333ad2ant2 977 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  C_  ( Base `  U ) )
3534, 23sseqtrd 3214 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  X  C_  (
( ( LTrn `  K
) `  W )  X.  ( ( TEndo `  K
) `  W )
) )
36 relss 4775 . . . . 5  |-  ( X 
C_  ( ( (
LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  -> 
( Rel  ( (
( LTrn `  K ) `  W )  X.  (
( TEndo `  K ) `  W ) )  ->  Rel  X ) )
3735, 25, 36ee10 1366 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  Rel  X )
38 oveq1 5865 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( u  .+  <.
z ,  w >. )  =  ( <. x ,  y >.  .+  <. z ,  w >. )
)
3938eqeq2d 2294 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( <. F ,  T >.  =  ( u 
.+  <. z ,  w >. )  <->  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )
4039anbi2d 684 . . . . . 6  |-  ( u  =  <. x ,  y
>.  ->  ( ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) ) )
41402exbidv 1614 . . . . 5  |-  ( u  =  <. x ,  y
>.  ->  ( E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u  .+  <.
z ,  w >. ) )  <->  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
4241exopxfr2 6184 . . . 4  |-  ( Rel 
X  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) ) )
4337, 42syl 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) ) )
44 19.42vv 1848 . . . . 5  |-  ( E. z E. w (
<. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  ( <. x ,  y >.  e.  X  /\  E. z E. w
( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
45 anass 630 . . . . . . . 8  |-  ( ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) )  <->  ( <. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
46452exbii 1570 . . . . . . 7  |-  ( E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) )  <->  E. z E. w ( <. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  (
<. x ,  y >.  .+  <. z ,  w >. ) ) ) )
4746bicomi 193 . . . . . 6  |-  ( E. z E. w (
<. x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )
4847a1i 10 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. z E. w ( <.
x ,  y >.  e.  X  /\  ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
4944, 48syl5bbr 250 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( ( <. x ,  y >.  e.  X  /\  E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )  <->  E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
50492exbidv 1614 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. x E. y ( <.
x ,  y >.  e.  X  /\  E. z E. w ( <. z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( <. x ,  y >.  .+  <. z ,  w >. )
) )  <->  E. x E. y E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
5143, 50bitrd 244 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( E. u  e.  X  E. z E. w ( <.
z ,  w >.  e.  Y  /\  <. F ,  T >.  =  ( u 
.+  <. z ,  w >. ) )  <->  E. x E. y E. z E. w ( ( <.
x ,  y >.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
5216, 32, 513bitrd 270 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  X  e.  S  /\  Y  e.  S
)  ->  ( <. F ,  T >.  e.  ( X  .(+)  Y )  <->  E. x E. y E. z E. w ( ( <. x ,  y
>.  e.  X  /\  <. z ,  w >.  e.  Y
)  /\  <. F ,  T >.  =  ( <.
x ,  y >.  .+  <. z ,  w >. ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   E.wrex 2544    C_ wss 3152   <.cop 3643    X. cxp 4687   Rel wrel 4694   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208  SubGrpcsubg 14615   LSSumclsm 14945   LModclmod 15627   LSubSpclss 15689   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   TEndoctendo 30941   DVecHcdvh 31268
This theorem is referenced by:  diblsmopel  31361  dihopelvalcpre  31438  xihopellsmN  31444  dihopellsm  31445
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-undef 6298  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-0g 13404  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-lsm 14947  df-mgp 15326  df-rng 15340  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-dvr 15465  df-drng 15514  df-lmod 15629  df-lss 15690  df-lvec 15856  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944  df-edring 30946  df-dvech 31269
  Copyright terms: Public domain W3C validator