Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhopspN Structured version   Unicode version

Theorem dvhopspN 31850
Description: Scalar product of  DVecH vector expressed as ordered pair. (Contributed by NM, 20-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
dvhopsp.s  |-  S  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
Assertion
Ref Expression
dvhopspN  |-  ( ( R  e.  E  /\  ( F  e.  T  /\  U  e.  E
) )  ->  ( R S <. F ,  U >. )  =  <. ( R `  F ) ,  ( R  o.  U ) >. )
Distinct variable groups:    f, s, E    T, f, s
Allowed substitution hints:    R( f, s)    S( f, s)    U( f, s)    F( f, s)

Proof of Theorem dvhopspN
StepHypRef Expression
1 opelxpi 4902 . . 3  |-  ( ( F  e.  T  /\  U  e.  E )  -> 
<. F ,  U >.  e.  ( T  X.  E
) )
2 dvhopsp.s . . . 4  |-  S  =  ( s  e.  E ,  f  e.  ( T  X.  E )  |->  <.
( s `  ( 1st `  f ) ) ,  ( s  o.  ( 2nd `  f
) ) >. )
32dvhvscaval 31834 . . 3  |-  ( ( R  e.  E  /\  <. F ,  U >.  e.  ( T  X.  E
) )  ->  ( R S <. F ,  U >. )  =  <. ( R `  ( 1st ` 
<. F ,  U >. ) ) ,  ( R  o.  ( 2nd `  <. F ,  U >. )
) >. )
41, 3sylan2 461 . 2  |-  ( ( R  e.  E  /\  ( F  e.  T  /\  U  e.  E
) )  ->  ( R S <. F ,  U >. )  =  <. ( R `  ( 1st ` 
<. F ,  U >. ) ) ,  ( R  o.  ( 2nd `  <. F ,  U >. )
) >. )
5 op1stg 6351 . . . . 5  |-  ( ( F  e.  T  /\  U  e.  E )  ->  ( 1st `  <. F ,  U >. )  =  F )
65fveq2d 5724 . . . 4  |-  ( ( F  e.  T  /\  U  e.  E )  ->  ( R `  ( 1st `  <. F ,  U >. ) )  =  ( R `  F ) )
7 op2ndg 6352 . . . . 5  |-  ( ( F  e.  T  /\  U  e.  E )  ->  ( 2nd `  <. F ,  U >. )  =  U )
87coeq2d 5027 . . . 4  |-  ( ( F  e.  T  /\  U  e.  E )  ->  ( R  o.  ( 2nd `  <. F ,  U >. ) )  =  ( R  o.  U ) )
96, 8opeq12d 3984 . . 3  |-  ( ( F  e.  T  /\  U  e.  E )  -> 
<. ( R `  ( 1st `  <. F ,  U >. ) ) ,  ( R  o.  ( 2nd `  <. F ,  U >. ) ) >.  =  <. ( R `  F ) ,  ( R  o.  U ) >. )
109adantl 453 . 2  |-  ( ( R  e.  E  /\  ( F  e.  T  /\  U  e.  E
) )  ->  <. ( R `  ( 1st ` 
<. F ,  U >. ) ) ,  ( R  o.  ( 2nd `  <. F ,  U >. )
) >.  =  <. ( R `  F ) ,  ( R  o.  U ) >. )
114, 10eqtrd 2467 1  |-  ( ( R  e.  E  /\  ( F  e.  T  /\  U  e.  E
) )  ->  ( R S <. F ,  U >. )  =  <. ( R `  F ) ,  ( R  o.  U ) >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   <.cop 3809    X. cxp 4868    o. ccom 4874   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   1stc1st 6339   2ndc2nd 6340
This theorem is referenced by:  dvhopN  31851
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342
  Copyright terms: Public domain W3C validator